Skip to main content
Log in

The chromosomal component of reproductive isolation in the grasshopper Caledia captiva

I. Meiotic analysis of chiasma distribution patterns in two chromosomal taxa and their F1 hybrids

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A comparison of chiasma distribution patterns between two chromosomal taxa, Moreton and Torresian, and their F1 hybrids demonstrates highly significant differences between all chromosomes analysed. In chromosomes 1, 2, 4, 5, 6 and 8 these differences can be directly attributed to pericentric heterozygosity in the F1 hybrid. In chromosomes 7 and 8 where there is no pericentric heterozygosity these differences may be due to heterozygosity for interstitial and terminal bands of hetero-chromatin or possibly undetected paracentric rearrangements. The F1 hybrids also have a significantly lower mean cell chiasma frequency. The Moreton and Torresian taxa differ significantly in chiasma distribution pattern in chromosomes 1, 2, 4, 5, 6 and 8 and both Moreton populations analysed have a significantly lower mean cell chiasma frequency than the Torresian population. In addition the two Moreton populations, (MMX) and (MAX), differ significantly in the chiasma distribution pattern in chromosomes 1 and 2 and the chromosomally more polymorphic population (MMX) has a significantly lower mean cell chiasma frequency. There is some evidence that the differences in both chiasma distribution and frequency between these two populations may be due to genetic differences in addition to the effects caused by chromosomal polymorphism. It has been shown that in general there is a substantial reduction in recombination in the intersitial regions of most chromosomes in the Moreton and particularly the Torresian taxon because of a proximal-distal localisation of chiasmata. In the F1 hybrid, however, nearly all recombination events are located within these interstitial regions. This provides support for the hypothesis that the frequent placement of chiasmata in regions of normally low recombination may disrupt the internal coadapted genetic environment of both chromosomal forms resulting in non-functional recombinant progeny in the next generation. The recombination data in this study also provide a basis for an empirical test of this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley, T., Moses, M.J., Solari, A.J.: Electron microscopy analysis of a pericentric inversion in the sand rate (Psammomys obesus). Genetics 91 (suppl), 52–53 (1979)

    Google Scholar 

  • Brncic, D.: Heterosis and the integration of the genotype in geographic populations of Drosophila pseudoobscura. Genetics 39, 77–88 (1954)

    Google Scholar 

  • Carson, H.L.: The genetics of speciation at the diploid level. Am. Nat. 109, 83–92 (1975)

    Google Scholar 

  • Craig-Cameron, T., Jones, C.H.: The analysis of exchanges in tritium labelled meiotic chromosomes. I. Schistocerca gregaria. Heredity 25, 223–232 (1970)

    Google Scholar 

  • Dobzhansky, T.: Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35, 288–302 (1950)

    Google Scholar 

  • Dobzhansky, T.: Genetics of the evolutionary process. Columbia University Press (1970)

  • Fletcher, H.L., Hewitt, G.M.: Non-homologous synaptonemal complex formation in a hetero-morphic bivalent in Keyacris scurra (Morabinae, Orthoptera). Chromosoma (Berl.) 65, 271–281 (1978)

    Google Scholar 

  • Fox, D.P.: The control of chiasma distribution in the locust, Schistocerca gregaria (Forskål) Chromosoma (Berl.) 43, 289–328 (1973)

    Google Scholar 

  • Franklin, I., Lewontin, R.C.: Is the gene the unit of selection? Genetics 65, 707–734 (1970)

    Google Scholar 

  • Gibbon, J.D.: Nonparametric statistical inference New York: McGraw-Hill 1971

    Google Scholar 

  • Hedrick, P., Jain, S., Holden, L.: Multilocus systems in evolution. Evol. Biol. 11, 101–184

  • Henderson, S.A.: Chiasma distribution at diplotene in a locust. Heredity 18, 173–190 (1963)

    Google Scholar 

  • Hewitt, G.M.: An interchange which raises chiasma frequency. Chromosoma (Berl.) 21, 285–295 (1967)

    Google Scholar 

  • John, B.: The cytogenetic systems of grasshoppers and locusts. II. The origin and evolution of supernumerary segments. Chromosoma (Berl.) 44, 123–146 (1973)

    Google Scholar 

  • John, B.: Heterochromatin variation in natural populations. Chromosomes Today 7, 128–137 (1981)

    Google Scholar 

  • John, B., Lewis, K.R.: The Meiotic System. Protoplasmatologia VIF1. Wien-New York: Springer, 1965

    Google Scholar 

  • Jones, G.H.: The analysis of exchange in tritium-labelled meiotic chromosomes. II. Stethophyma grossum. Chromosoma (Berl.) 34, 367–382 (1971)

    Google Scholar 

  • Martin, J.: Meiosis in inversion heterozygotes in Chironomidae. Can. J. Genet. Cytol. 9, 255–268 (1967)

    Google Scholar 

  • Mather, K.: Genetical structure of populations. London: Chapman and Hall 1973

    Google Scholar 

  • Maynard-Smith, J.: The Evolution of sex. Cambridge: Cambridge University Press 1978

    Google Scholar 

  • Moran, C.: The structure of the hybrid zone in Caledia captiva. Heredity 42, 13–32 (1979)

    Google Scholar 

  • Moran, C.: Spermatogenesis in natural and experimental hybrids between chromosomally differentiated taxa of Caledia captiva. Chromosoma (Berl.) 81, 579–591 (1981)

    Google Scholar 

  • Moran, C., Shaw, D.D.: Population cytogenetics of the genus Caledia (Orthoptera: Acridinae). III. Chromosomal polymorphism, racial parapatry and introgression. Chromosoma (Berl.) 63, 181–204 (1977)

    Google Scholar 

  • Moran, C., Wilkinson, P., Shaw, D.D.: Allozyme variation across a narrow hybrid zone in the grasshopper Caledia captiva. Heredity 44, 69–81 (1980)

    Google Scholar 

  • Peacock, W.J.: Replication, recombination and chiasmata in Goniaea australasiae (Orthoptera: Acrididae). Genetics 65, 593–617 (1970)

    Google Scholar 

  • Rees, H., Dale, P.J.: Chiasmata and variability in Lolium and Festuca populations. Chromosoma (Berl.) 47, 335–351 (1974)

    Google Scholar 

  • Shaw, D.D.: Population cytogenetics of the genus Caledia (Orthoptera: Acridinae). I. Inter- and intraspecific karyotype diversity. Chromosoma (Berl.) 54, 221–243 (1976)

    Google Scholar 

  • Shaw, D.D., Knowles, G.R.: Comparative chiasma analysis using a computerised optical digitiser. Chromosoma (Berl.) 59, 103–127 (1976)

    Google Scholar 

  • Shaw, D.D., Wilkinson, P.: Chromosome differentiation, hybrid breakdown and the maintenance of a narrow hybrid zone in Caledia. Chromosoma (Berl.) 80, 1–31 (1980)

    Google Scholar 

  • Shaw, D.D., Webb, G.C., Wilkinson, P.: Population cytogenetics of the genus Caledia (Orthoptera: Acridinae). II. Variation in the pattern of C-banding. Chromosoma (Berl.) 56, 169–190 (1976)

    Google Scholar 

  • Shaw, D.D., Wilkinson, P., Coates, D.J.: The chromosomal component of reproductive isolation in the grasshopper Caledia captiva; IL The relative viabilities of recombinant and non-recombinant chromosomes during embryogenesis. Chromosoma (Berl.) 86, 533–549 (1982)

    Google Scholar 

  • Southern, D.I.: Chiasma distribution in Truxaline grasshoppers. Chromosoma (Berl.) 22, 164–191 (1967)

    Google Scholar 

  • Tease, C., Jones, G.H.: Analysis of exchanges in differentially stained meiotic chromosomes of Locusta migratoria after BrdU-substitution and FPG staining. I. Crossover exchanges in monochiasmate bivalents. Chromosoma (Berl.) 69, 163–178 (1978)

    Google Scholar 

  • Turner, J.R.G.: Why does the genotype not congeal? Evolution (Lawrence, Kans.) 21, 645–656 (1967)

    Google Scholar 

  • Vetukhiv, M.: Integration of the genotype in local populations of three species of Drosophila. Evolution (Lawrence, Kans.) 8, 241–251 (1954)

    Google Scholar 

  • Wallace, B.: On coadaptation in Drosophila. Am. Nat. 87, 343–358 (1953)

    Google Scholar 

  • Webb, G.C.: Chromosome organisation in the Australian plague locust, Chortoicetes terminifera. I. Banding relationships of the normal and supernumerary chromosomes. Chromosoma (Berl.) 55, 229–246 (1976)

    Google Scholar 

  • Whitehouse, C., Edgar, L.A., Jones, G.H., Parker, J.S.: The population cytogenetics of Crepis capillaris. I. Chiasma variation. Heredity 47, 95–103 (1981)

    Google Scholar 

  • Weissman, D.B.: Geographical variability in the pericentric inversion system of the grasshopper Trimerotropis pseudofasciata. Chromosoma (Berl.) 55, 325–347 (1976)

    Google Scholar 

  • White, M.J.D., Morley, F.H.W.: Effects of pericentric rearrangements on recombination in grasshopper chromosomes. Genetics 40, 604–619 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, D.J., Shaw, D.D. The chromosomal component of reproductive isolation in the grasshopper Caledia captiva . Chromosoma 86, 509–531 (1982). https://doi.org/10.1007/BF00330124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330124

Keywords

Navigation