Skip to main content
Log in

The organization of the main component DNA of a crustacean genome with a paucity of middle repetitive sequences

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The frequency classes and organization of the main component (mc) DNA of a crustacean, the land crab, Gecarcinus lateralis, have been characterized. The reassociation kinetics of 380 nucleotide long mcDNA fragments show that approximately 50% contain sequences repeated more than 800 times. Present in few, if any, copies are sequences repeated from 2 to 800 times. The remainder of the DNA reassociates as single copy sequences with a rate constant consistent with the organism's genome size. The reassociation kinetics of highly sheared DNA fragments of every true crab studied (Vaughn, 1975; Christie et al., 1976) are similar to each other and different from those of other invertebrate DNAs (Goldberg et al., 1975). Each of these genomes has a paucity of sequences repeated from 10 to 800 times and an abundance of highly repeated sequences. To determine if sequences repeated more than 800 times are interspersed with single copy sequences, we examined the arrangement of repetitive and non-repetitive sequences in mcDNA. The reassociation and melting properties of partially duplex mcDNA fragments of increasing lengths show that at least 75% of the DNA is organized in an interspersed pattern. In this pattern, single copy sequences with an average length of 800–900 nucleotides are interspersed with repetitive sequences. S1 nuclease digestion of reassociated 3100 nucleotide fragments indicates that ∼44% of the mcDNA is repetitive and that one-third of the repetitive sequences (average length=285 nucleotides) are interspersed with single copy sequences. We conclude that repetitive sequencies are interspersed with most of the single copy sequences in an interspersion pattern similar to that of Xenopus rahter than to that of another arthropod, Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angerer, R.C., Davidson, E.H., Britten, R.J.: DNA sequence organization in the mollusc Aplysia californica. Cell 6, 29–39 (1975)

    Google Scholar 

  • Angerer, R.C., Davidson, E.H., Britten, R.J.: Single copy DNA and structural gene sequence relationships among four sea urchin species. Chromosoma (Berl.) 56, 213–226 (1976)

    Google Scholar 

  • Bautz, E.K.F., Bautz, F.A.: The influence of noncomplementary bases on the stability of ordered polynucleotides. Proc. nat. Acad. Sci. (Wash.) 52, 1476–1481 (1964)

    Google Scholar 

  • Beattie, W.G., Skinner, D.M.: The diversity of crustacean satellite DNAs. Biochim. biophys. Acta (Amst.) 281, 169–178 (1972)

    Google Scholar 

  • Berg, P., Fancher, H., Chamberlin, M.: The synthesis of mixed polynucleotides containing ribo- and deoxyribonucleotides by purified preparations of DNA polymerase from E. coli. In: Informational macromolecules (H.J. Vogel, V. Bryson and J.O. Lampen, eds.), pp. 467–484. New York: Academic Press 1963

    Google Scholar 

  • Biro, P.A., Carr-Brown, A., Southern, E.M., Walker, P.M.B.: Partial sequence analysis of mouse satellite DNA: evidence for short range periodicities. J. molec. Biol. 94, 71–86 (1975)

    Google Scholar 

  • Birnstiel, M.L., Chipchase, M., Speirs, J.: The ribosomal RNA cistrons. Prog. Nucleic Acids Res. molec. Biol. 11, 351–389 (1971)

    Google Scholar 

  • Bollum, F.J.: Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase. J. biol. Chem. 237, 1945–1949 (1962)

    Google Scholar 

  • Britten, R.J., Graham, D.E., Eden, F.C., Painchaud, D.M., Davidson, E.H.: Evolutionary divergence and length of repetitive sequences in sea urchin DNA. J. molec. Evol. 9, 1–23 (1976)

    Google Scholar 

  • Britten, R.J., Graham, D.E., Neufeld, B.R.: An analysis of repeating DNA sequences by reassociation. In: Methods in enzymology, 29E, (L. Grossman and K. Moldave, eds.), pp. 363–418. New York: Academic Press 1974

  • Cairns, J.: The chromosome of E. coli. Cold Spr. Harb. Symp. quant. Biol. 28, 43–46 (1963)

    Google Scholar 

  • Christie, N.T., Holland, C.A., Skinner, D.M.: Repetitive sequences in the DNA of a highly evolved crab and a primitive crab. J. Cell Biol. 70, 246a (1976)

  • Crain, W.R., Davidson, E.H., Britten, R.J.: Contrasting patterns of DNA sequence arrangement in Apis mellifera (Honeybee) and Musca domestica (Housefly). Chromosoma (Berl.) 59, 1–12 (1976b)

    Google Scholar 

  • Crain, W.R., Eden, F.C., Pearson, W.R., Davidson, E.H., Britten, R.J.: Absence of short period interspersion of repetitive and non-repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma (Berl.) 56, 309–326 (1976a)

    Google Scholar 

  • Das, S.K., Fujimura, R.K.: Exonuclease associated with bacteriophage T-5-induced DNA polymerase. J. Virol. 20, 70–77 (1976)

    Google Scholar 

  • Davidson, E.H., Galau, G.A., Angerer, R.C., Britten, R.J.: Comparative aspects of DNA organization of metazoa. Carnegie Inst. Wash. Year Book 74, 673–678 (1976)

    Google Scholar 

  • Davidson, E.H., Hough, B.R., Amenson, C.S., Britten, R.J.: General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. molec. Biol. 77, 1–23 (1973)

    Google Scholar 

  • Efstratiadis, A., Crain, W.R., Britten, R.J., Davidson, E.H., Kafatos, F.C.: DNA sequence organization in the lepidopteran Antheraea pernyi. Proc. nat. Acad. Sci. (Wash.) 73, 2289–2293 (1976)

    Google Scholar 

  • Englund, P.T.: DNA polymerase from E. coli. In: Procedures in nucleic acid research (G. Cantoni and D. Davies, eds.), pp. 864–874. New York: Harper and Row 1971

    Google Scholar 

  • Goldberg, R.B., Crain, W.R., Ruderman, J.V., Moore, G.P., Barnett, T.R., Higgins, R.C., Gelfand, R.A., Galau, G.A., Britten, R.J., Davidson, E.H.: DNA sequence organization in the genomes of five marine invertebrates. Chromosoma (Berl.) 51, 225–251 (1975)

    Google Scholar 

  • Graham, D.E., Neufeld, B.R., Davidson, E.H., Britten, R.J.: Interspersion of repetitive and nonrepetitive DNA sequences in the sea urchin genome. Cell 1, 127–137 (1974)

    Google Scholar 

  • Graham, D.E., Skinner, D.M.: Homologies of repetitive DNA sequences among Crustacea. Chromosoma (Berl.) 40, 135–152 (1973)

    Google Scholar 

  • Holland, C.A., Skinner, D.M.: Interactions between molting and regeneration in a land crab. Biol. Bull. 150, 222–240 (1976)

    Google Scholar 

  • Jacob, E.: Histone-gene reiteration in the genome of mouse. Europ. J. Biochem. 65, 275–284 (1976)

    Google Scholar 

  • Kedes, L.H.: Histone messengers and histone genes. Cell 8, 321–331 (1976)

    Google Scholar 

  • Klett, R.P., Cerami, A., Reich, E.: Exonuclease VI, a new nuclease activity associated with E. coli DNA polymerase. Proc. nat. Acad. Sci (Wash.) 60, 943–950 (1968)

    Google Scholar 

  • Kunkel, L.M., Smith, K.D., Boyer, S.H.: Human Y-chromosome-specific reiterated DNA. Science 191, 1189–1190 (1976)

    Google Scholar 

  • Lagowski, J.M., Wong Yu, M., Forrest, H.S., Laird, C.D.: Dispersity of repeat DNA sequences in Oncopeltus fasciatus, an organism with diffuse centromeres. Chromosoma (Berl.) 43, 349–373 (1973)

    Google Scholar 

  • Manning, J.E., Schmid, C.W., Davidson, N.: Interspersion of repetitive and nonrepetitive DNA sequences in the Drosophila melanogaster genome. Cell 4, 141–155 (1975)

    Google Scholar 

  • Markham, R.: The ultracentrifuge. In: Methods in virology (K. Maramorosch and H. Koprowski, eds.), pp. 1–39. New York: Academic Press 1967

    Google Scholar 

  • Masamune, Y., Richardson, C.C.: Strand displacement during deoxyribonucleic acid synthesis at single strand breaks. J. biol. Chem. 246, 2692–2701 (1971)

    Google Scholar 

  • Musich, P.R., Skinner, D.M.: A cytological study of the DNA of the Bermuda land crab. J. Cell Biol. 55, 184a (1972)

  • Noll, H.: Characterization of macromolecules by constant velocity sedimentation. Nature (Lond.) 215, 360–363 (1967)

    Google Scholar 

  • Perlman, S., Phillips, D., Bishop, J.: A study of foldback DNA. Cell 8, 33–42 (1976)

    Google Scholar 

  • Sachs, D.H., Painter, E.: Improved flow rates with porous sephadex gels. Science 175, 781–782 (1972)

    Google Scholar 

  • Sachs, R.I., Clever, U.: The unique and repetitive DNA sequences in the genome of Chironomus tentans. Exp. Cell Res. 74, 587–591 (1972)

    Google Scholar 

  • Schmid, C.W., Deininger, O.L.: Sequence organization of the human genome. Cell 6, 345–358 (1975)

    Google Scholar 

  • Skinner, D.M.: Satellite DNAs in the crabs Gecarcinus lateralis and Cancer pagurus. Proc. nat. Acad. Sci. (Wash.) 58, 103–110 (1967)

    Google Scholar 

  • Skinner, D.M.: Deoxyribonucleic acid sequences complementary to ribosomal ribonucleic acid in a crustacean. Biochemisty 8, 1467–1473 (1969)

    Google Scholar 

  • Skinner, D.M., Beattie, W.G.: Cs2SO4 gradients containing both Hg2+ and Ag+ effect the complete separation of satellite DNAs having identical densities in neutral CsCl gradients. Proc. nat. Acad. Sci. (Wash.) 70, 3108–3110 (1973)

    Google Scholar 

  • Skinner, D.M., Beattie, W.G., Blattner, F.R., Stark, B.P., Dahlberg, J.E.: The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n.·(-A-T-C-C-)n. Biochemistry 13, 3930–3937 (1974)

    Google Scholar 

  • Southern, E.M.: Base sequence and evolution of guinea pig α-satellite DNA. Nature (Lond.) 227, 794–798 (1970)

    Google Scholar 

  • Studier, F.W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965)

    Google Scholar 

  • Tartoff, K.D.: Redundant genes. Ann. Revs. Genet. 355–385 (1975)

  • Vaughn, J.C.: DNA reassociation kinetics and chromosome structure in the crabs Cancer borealis and Libinia emarginata. Chromosoma (Berl.) 50, 243–257 (1975)

    Google Scholar 

  • Vaughn, J.C., Traeger, F.J.: Conservation of repeated DNA base sequences in the Crustacea: A molecular approach to decapod phylogeny. J. molec. Evol. 7, 111–131 (1976)

    Google Scholar 

  • Vogt, V.M.: Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Europ. J. Biochem. 33, 192–200 (1973)

    Google Scholar 

  • Walbot, V., Dure, L.S.: Developmental biochemistry of cotton seed embryogenesis and germination. VII. Characterization of the cotton genome. J. molec. Biol. 101, 503–536 (1976)

    Google Scholar 

  • Wilson, D.A., Thomas, C.A.: Palindromes in chromosomes. J. molec. Biol. 84, 115–144 (1974)

    Google Scholar 

  • Zimmerman, J.L., Goldberg, R.B.: DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma (Berl.) 59, 227–252 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated by Union Carbide Corporation for the Energy Research and Development Administration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, C.A., Skinner, D.M. The organization of the main component DNA of a crustacean genome with a paucity of middle repetitive sequences. Chromosoma 63, 223–240 (1977). https://doi.org/10.1007/BF00327451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327451

Keywords

Navigation