Skip to main content
Log in

Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Freeze-fracture-etch replicas of concentrated DNA solutions which appeared, by polarized light microscopy, to be in a cholesteric-like liquid crystalline state were examined by high resolution transmission electron microscopy (TEM). Individual DNA molecules were resolvable, and the microscopic morphologies observed for such replicas confirmed the cholesteric organization of DNA molecules in this liquid crystalline state. Furthermore, replica morphologies were strikingly similar to TEM images of dinoflagellate chromosomes in both thin section and freeze-etch replicas, providing strong support for the cholesteric DNA packing model proposed for the organization of DNA in these chromosomes by Bouligand and Livolant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abermann R, Salpeter MM, Bachmann L (1972) High resolution shadowing. In: Hayat MA (ed) Principles and techniques of electron microscopy, vol 2. Van Nostrand Reinhold, NY, pp 196–217

    Google Scholar 

  • Babillot C (1970) Étude de l'incorporation d'uridine tritié dans le noyau d'Amphidinium carteri (Dinoflagellé). CR Acad Sci [III] 271:838–841

    Google Scholar 

  • Bouligand Y, Soyer MO, Puiseaux-Dao S (1968) La structure fibrillaire et l'orientation des chromosomes chez les Dinoflagellés. Chromosoma 24:251–287

    Google Scholar 

  • Brandes R, Kearns DR (1986) Magnetic ordering of DNA liquid crystals. Biochemistry 25:5890–5895

    Google Scholar 

  • Brugerolle G, Mignot JP (1979) Distribution et organisation de l'ADN dans le complexe kinétoplaste-mitochondrie chez un Bodonidé, protozoaire kinétoplastidé; variation au cours du cycle cellulaire. Biol Cell 35:111–114

    Google Scholar 

  • Chapman RL, Staehelin LA (1986) Freeze-fracture-etch techniques. In: Aldrich HC, Todd WJ (eds) Ultrastructure techniques for microorganisms. Plenum Press, NY, pp 213–240

    Google Scholar 

  • Costas E, Goyanes VJ (1987) Ultrastructure and division behaviour of dinoflagellate chromosomes. Chromosoma 95:435–441

    Google Scholar 

  • Dodge JD (1963) Chromosome numbers in some marine Dinoflagellates. Bot Mar 5:121–127

    Google Scholar 

  • Gautier A, Michel-Salamin L, Tosi-Couture E, McDowall AW, Dubochet J (1986) Electron microscopy of the chromosomes of dinoflagellates in situ: Confirmation of Bouligand's liquid crystal hypothesis. J Ultrastruct Mol Struct Res 97:10–30

    Google Scholar 

  • Gourret JP (1978) Description et interprétation des nucléoïdes structurés observés dans des bactéroïdes de Rhizobium. Biol Cell 32:299–306

    Google Scholar 

  • Haapala OK, Soyer M-O (1973) Structure of dinoflagellate chromosomes. Nature New Biol 244:195–197

    Google Scholar 

  • Haapala OK, Soyer M-O (1974) Electron microscopy of whole-mounted chromosomes of the dinoflagellate Gyrodinium cohnii. Hereditas 76:83–90

    Google Scholar 

  • Kellenberger E, Carlemalm E, Sechaud J, Ryter A, De Haller G (1986) Considerations on the condensation and the degree of compactness in non-eukaryotic DNA-containing plasmas. In: Gualerzi CO, Pon CL (eds) Bacterial Chromatin. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 11–25

    Google Scholar 

  • Lerman LS (1973) Chromosomal analogues: Long-range order in PSI-condensed DNA. Cold Spring Harbor Symp Quant Biol 38:59–73

    Google Scholar 

  • Lerman LS, Wilkerson LS, Venable JH, Robinson BH (1976) DNA packing in single crystals inferred from freeze-fracture-etch replicas. J Mol Biol 108:271–293

    Google Scholar 

  • Livolant F (1978) Positive and negative birefringence in chromosomes. Chromosoma 68:45–58

    Google Scholar 

  • Livolant F (1984a) Cholesteric organization of DNA in vivo and in vitro. Eur J Cell Biol 33:300–311

    Google Scholar 

  • Livolant F (1984b) Cholesteric organization of DNA in the stallion sperm head. Tissue Cell 16:535–555

    Google Scholar 

  • Livolant F (1986) Cholesteric liquid crystalline phases given by three helical biological polymers: DNA, PBLG, and xanthan. A comparative analysis of their textures. J Physique 47:1605–1616

    Google Scholar 

  • Livolant F (1987) Precholesteric liquid crystalline states of DNA. J Physique 48:1051–1066

    Google Scholar 

  • Livolant F, Bouligand Y (1978) New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma 68:21–44

    Google Scholar 

  • Livolant F, Bouligand Y (1986) Liquid crystalline phases given by helical biological polymers (DNA, PBLG, and xanthan). Columnar textures. J Physique 47:1813–1827

    Google Scholar 

  • Miller WG, Russo PS, Chakrabarti S (1985) Composition, phase behavior, and morphology in poly(amino acid)s forming lyotropic liquid crystals. J Appl Polymer Sci: Appl Polymer Symp 41:49–63

    Google Scholar 

  • Oakley B, Dodge JD (1979) Evidence for a double-helically coiled toroidal chromonema in the Dinoflagellate chromosome. Chromosoma 70:277–291

    Google Scholar 

  • Rill RL (1986) Liquid crystalline phases in concentrated aqueous solutions of Na+ DNA. Proc Natl Acad Sci USA 83:342–346

    Google Scholar 

  • Rill RL, Hilliard PR, Levy GC (1983) Spontaneous ordering of DNA. Effects of intermolecular interactions on DNA motional dynamics monitored by 13C and 31P nuclear magnetic resonance spectroscopy. J Biol Chem 258:250–256

    Google Scholar 

  • Rizzo PJ (1987) Biochemistry of the dinoflagellate nucleus. In: Taylor FJR (ed) The biology of dinoflagellates. Botanical monographs 21. Blackwell Scientific Publications, Boston, pp 143–173

    Google Scholar 

  • Robards AW, Sleytr UB (1985) Freeze fracture replication. In: Glauert AM (ed) Practical methods in electron microscopy 10. Elsevier, New York, pp 309–458

    Google Scholar 

  • Robinson C (1961) Liquid-crystalline structures in polypeptide solutions. Tetrahedron 13:219–234

    Google Scholar 

  • Robinson C, Ward JC, Beevers RB (1957) Liquid crystalline structure in polypeptide solutions. Disc Faraday Soc Part 2. 25:29

    Google Scholar 

  • Senechal E, Maret G, Dransfeld K (1980) Long-range order of nucleic acids in aqueous solutions. Int J Biol Macromol 2:256–262

    Google Scholar 

  • Sigee DC (1986) The dinoflagellate chromosome. Adv Bot Res 12:205–264

    Google Scholar 

  • Soyer MO, Escaig J (1980) Les structures nucléaires et leurs modifications au cours de la division chez le dinoflagellé libre Prorocentrum micans E. étude en cryofracture. Protistologica 16:485–495

    Google Scholar 

  • Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed) Dinoflagellates. Academic Press, New York, pp 107–146

    Google Scholar 

  • Strzelecka TE, Rill RL (1987) Solid-state 31P NMR studies of DNA liquid crystalline phases. The isotropic to cholesteric transition. J Am Chem Soc 109:4513–4518

    Google Scholar 

  • Strzelecka TE, Davidson MW, Rill RL (1988) Multiple liquid crystalline phases of DNA at high concentrations. Nature 331:457–460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rill, R.L., Livolant, F., Aldrich, H.C. et al. Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 98, 280–286 (1989). https://doi.org/10.1007/BF00327314

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327314

Keywords

Navigation