Skip to main content
Log in

X-autosome ratio and the behavior pattern of individual X-chromosomes in placental mammals

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

From the 15 diverse species of placental mammals investigated cytologically in this laboratory, seven species and one interspecific hybrid were selected for the present study : man (Homo sapiens, 2n=46), cattle (Bos taurus, 2n=60), the cat (Felis domestica, 2n=38), the dog (Canis familiaris, 2n=78), the mouse (Mus musculus, 2n=40), the golden hamster (Mesocricetus auratus, 2n=44), the creeping vole (Microtus oregoni, 2n=17/18), and the mule (2n=63).

We devised a method for making two-dimensional measurements of chromosomes which produced the following results:

  1. 1.

    Despite the wide variation in chromosome number, the eight species had diploid chromosome complements which appeared to contain about the same amount of genetic material, varying from 145.14 μ2 in the mouse to 165.73 μ2 in cattle.

  2. 2.

    The X-chromosome of the dog, the donkey, and cattle appeared to be almost identical in absolute size, ranging from 4.11 to 4.65 μ2. Although only presumptive identification of the X is possible in the cat, the mouse, man, and the horse, they too seemed to fall within the same size range (3.75–5.07 μ2).

Phylogenic studies of vertebrate sex chromosomes suggest that the X in the great majority of placental mammals retains the original size and genetic constitution of a common ancestor. In the golden hamster, the X is twice this size (8.33 μ2) and is regarded as a duplicate; in the creeping vole, three times (12.70 μ2), a triplicate. In the latter species, the sex chromosome constitution of somatic cells in the normal female is XO.

  1. 3.

    Each of the three X-chromosome types demonstrated a distinctive behavior pattern in somatic cells. If positive heteropycnosis can be equated with genetic inertness, then all the species in this study appeared to have about the same amount of functioning X-chromosome material in diploid nuclei of both sexes. The ambivalent nature of the mammalian X apparently provides the mechanism which maintains the constant optimal ratio between the functional X and the autosomes in somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allfrey, V. G., A. E. Mirsky, and H. Stern: The chemistry of the cell nucleus. Advanc. Enzymol. 16, 411–500 (1955).

    Google Scholar 

  • Awa, A., M. Sasaki, and S. Takayama: An in vitro study of the somatic chromosomes in several mammals. Jap. J. Zool. 12, 257–265 (1959).

    Google Scholar 

  • Barr, M. L.: Das Geschlechtschromatin (The sex chromatin), in Die Intersexualität, ed. by Claus Overzier. Stuttgart: Georg Thieme 1961.

    Google Scholar 

  • —, and L. F. Bertram: A morphological distinction between neurones of the male and female and the behavior of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature (Lond.) 163, 676–677 (1949).

    Google Scholar 

  • Beçak, W., M. L. Beçak, and H. R. S. Nazareth: Karyotypic studies of two species of South American snakes (Boa constrictor amarali and Bothrops jararaca). Cytogenetics 1, 305–313 (1962).- Karyotypic studies of South American snakes. Presented before the XI Internat. Congr. of Genetics, The Hague, 1963.

    Google Scholar 

  • Benirschke, K., L. E. Brownhill, and M. M. Beath: Somatic chromosomes of the horse, the donkey and their hybrids, the mule and the hinny. J. Reprod. Fertil. 4, 319–326 (1962).

    Google Scholar 

  • Beutler, E., Mary Yeh and V. F. Fairbanks: The normal human female as a mosaic of X-chromosome activity: studies using the gene for G-6-PD-deficiency as a marker. Proc. nat. Acad. Sci. (Wash.) 48, 9–16 (1962).

    Google Scholar 

  • Clausen, J. J., and J. T. Syverton: Comparative chromosomal study of 31 cultured mammalian cell lines. J. nat. Cancer Inst. 28, 117–145 (1962).

    Google Scholar 

  • Cox, E. K.: The chromosomes of the house mouse. J. of Morph. Physiol. 43, 45–53 (1926).

    Google Scholar 

  • Field, R. A., and C. G. Rickard: Hemophilia in a family of dogs. Cornell Vet. 36, 285–300 (1946).

    Google Scholar 

  • Hsu, T. C., H. H. Rearden, and G. F. Luquette: Karyological studies of nine species of Felidae. Amer. Naturalist 97, 225–234 (1963).

    Google Scholar 

  • Humphrey, R. R.: Reversal of sex in females of genotype WW in the axolotl (Siredon or Ambystoma mexicanum) and its bearing upon role of the Z-chromosomes in the development of the testis. J. exp. Zool. 107, 171–186 (1948).

    Google Scholar 

  • Kleinfeld, R., and E. H. Y. Chu: DNA determinations of kidney cell cultures of three species of monkeys. Cytologia (Tokyo) 23, 452–459 (1958).

    Google Scholar 

  • Leuchtenberger, C., R. Vendrely, and C. Vendrely: A comparison of the content of desoxyribose nucleic acid (DNA) in isolated animal nuclei by cytochemical and chemical methods. Proc. nat. Acad. Sci. (Wash.) 37, 33–38 (1951).

    Google Scholar 

  • Levan, A., T. C. Hsu, and H. F. Stich: The idiogram of the mouse. Hereditas (Lund) 48, 676–687 (1962).

    Google Scholar 

  • Lyon, M. F.: Gene action in the X-chromosome of the mouse (Mus musculus L.) Nature (Lond.) 190, 372–373 (1961).

    Google Scholar 

  • Makino, S., and T. C. Hsu: Mammalian chromosomes in vitro. V. The somatic complement of the Norway rat, Rattus norvegicus. Cytologia (Tokyo) 19, 23–28 (1954).

    Google Scholar 

  • Matthey, R.: Les chromosomes sexuels géants de Microtus agrestis L. La Cellule 53, 163–184 (1950);- Un nouveau type de détermination chromosomique du sexe chez les mammifères Ellobius lutescens Th. et Microtus (Chilotus) oregoni Bach. (Muridés-Microtinés.) Experientia (Basel) 14, 240 (1958);-Matthey, R. Chromosomes, héterochromosomes et cytologie comparée des cricetinae paléarctiques (Rodentia). Caryologia (Firenze) 13, 199–223 (1960).

    Google Scholar 

  • Mirsky, A. E., and H. Ris: Variable and constant components of chromosomes. Nature (Lond.) 163, 666–667 (1949).

    Google Scholar 

  • Moore, K. L., and M. L. Barr: Nuclear morphology, according to sex, in human tissues. Acta anat. (Basel) 21, 197–208 (1954).

    Google Scholar 

  • —, M. A. Graham and M. L. Barr: The sex chromatin in the bovine freemartin. J. exp. Zool. 135, 101–125 (1957).

    Google Scholar 

  • Mustard, J. F., H. C. Roswell, G. A. Robinson, T. D. Hoeksema and H. G. Downie: Canine hemophilia B (Christmas disease). Brit. J. Haemat. 6, 259–266 (1960).

    Google Scholar 

  • Ohno, S., and T. S. Hauschka: Allocycly of the X-chromosome in tumors and normal tissues. Cancer Res. 20, 541–545 (1960).

    Google Scholar 

  • —, J. Jainchill, and C. Stenius: The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The OY/XY constitution of the male. Cytogenetics 2, 222–239 (1963).

    Google Scholar 

  • —, W. D. Kaplan, and R. Kinosita: Heterochromatic regions and nucleolus organizers in chromosomes of the mouse, Mus musculus. Exp. Cell Res. 13, 358–364 (1957); Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18, 415–418 (1959).

    Google Scholar 

  • -, and S. Makino: The single X nature of the sex chromatin in man. Lancet 1961 I, 78–79.

  • —, C. Stenius, C. Weiler, J. Trujillo, W. D. Kaplan, and R. Kinosita: Early meiosis of male germ cells in fetal testis of Felis domestica. Exp. Cell Res. 27, 401–404 (1962).

    Google Scholar 

  • —, J. Trujillo, C. Stenius, L. C. Christian, and R. Teplitz: Possible germ cell chimeras among newborn dizygotic twin calves (Bos taurus). Cytogenetics 1, 258–265 (1962).

    Google Scholar 

  • —, and C. Weiler: Sex chromosome behavior pattern in germ and somatic cells of Mesocricetus auratus. Chromosoma (Berl.) 12, 362–373 (1961).

    Google Scholar 

  • Robinson, A., Ed.: A proposed standard system of nomenclature of human mitotic chromosomes. J. Amer. med. Ass. 174, 159–162 (1960).

    Google Scholar 

  • Rothfels, K. H., A. A. Axelrad, L. Siminovitch, E. A. McCulloch, and R. C. Parker: The origin of altered cell lines from mouse, monkey, and man as indicated by chromosome and transplantation studies. Canad. Cancer Conf. 3, 189–214 (1959).

    Google Scholar 

  • Sachs, L., and M. Danon: Diagnosis of the sex chromosomes in human tissues. Genetica (s'Gravenhage) 28, 201–216 (1956).

    Google Scholar 

  • Saksela, E., and P. S. Moorhead: Enhancement of secondary constrictions and the heterochromatic X in human cells. Cytogenetics 1, 225–244 (1962).

    Google Scholar 

  • Sasaki, M. S., and S. Makino: Revised study of the chromosomes of domestic cattle and the horse. J. Hered. 53, 157–162 (1962).

    Google Scholar 

  • Schmid, W.: Personal communication 1963.

  • Schneider, S. Personal communication 1963.

  • Takahashi, M.: Sex difference found in nucleomorphology of nerve cells of some mammals. Zool. Mag. 61, 26 (1952).

    Google Scholar 

  • Taylor, J. H.: Duplication of chromosomes and related events in the cell cycle. In: Cell physiology of neoplasia. Austin: Univ. of Texas Press 1960.

    Google Scholar 

  • Tjio, J. H., and A. Levan: The chromosome number of man. Hereditas (Lund) 42, 1–6 (1956).

    Google Scholar 

  • Trujillo, J. M., C. Stenius, L. C. Christian, and S. Ohno: Chromosomes of the horse, the donkey, and the mule. Chromosoma (Berl.) 13, 243–248 (1962).

    Google Scholar 

  • Wahrman, J., and A. Zahavi: Cytological contributions to the phylogeny and classification of the rodent genus Gerbillus. Nature (Lond.) 175, 600–602 (1955).

    Google Scholar 

  • Weiler, C., and S. Ohno: Emergence of the heteromorphic sex pair in North American Ranidae. (In preparation.)

  • Yamamoto, T.: Progeny of artifically induced sex-reversals of male genotype (XY) in the medaka, Oryzias latipes, with special reference to the YY-male. Genetics 40, 406–419 (1955).

    Google Scholar 

  • Yerganian, G.: Chromosomes of the Chinese hamster, Cricetulus griseus. I. The normal complement and identification of sex chromosomes. Cytologia (Tokyo) 24, 66–75 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 22-63, Department of Biology, City of Hope Medical Center. This work was supported in part by grant CA-05138-04, National Cancer Institute, U. S. Public Health Service. In order to spend three months in this laboratory, W. Beçak and M. L. Beçak of the Secção de Genética, Instituto Butantan, São Paulo, Brasil, received travel grants respectively from the Institute for Advanced Learning in the Medical Sciences, City of Hope Medical Center, and from the Campanha Nacional de Aperfeiçoamento de Pessoal de Nivel Superior, Republic of Brasil.

The authors acknowledge with gratitude the editorial assistance of Patricia A. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, S., Beçak, W. & Beçak, M.L. X-autosome ratio and the behavior pattern of individual X-chromosomes in placental mammals. Chromosoma 15, 14–30 (1964). https://doi.org/10.1007/BF00326912

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326912

Keywords

Navigation