Skip to main content
Log in

The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A–H2B and H3–H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox the 3′ untranslated regions contain no poly A signal, but a palindromic sequence (3′ palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A–H2B pair. The H1 upstream region contains the octameric promoter element GGTTGA-CC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intronfree. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II (66% identity). Organization of the core histone gene in pairs, and non-polyadenylation of mRNAs are features shared with animals, whereas peptide sequences and enhancer elements are shared with higher plants, assigning the volvocalean histone genes a position intermediate between animals and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannon GA, Calzone FJ, Bowen JK, Allis CD, Gorovsky MA (1993) Nucleic Acids Res 11:3903–3917

    Google Scholar 

  • Boseman-Roberts S, Sanicola M, Emmons SW, Childs G (1987) J Mol Biol 196:27–38

    Google Scholar 

  • Boseman-Roberts S, Emmons SW, Childs G (1989) J Mol Biol 206:567–577

    Google Scholar 

  • Chabouté ME, Chaubet N, Clement B, Gigot C, Philipps G (1988) Gene 71:217–223

    Google Scholar 

  • Chabouté ME, Chaubet N, Gigot C, Philipps G (1993) Biochimie 75:523–531

    Google Scholar 

  • Cole KD, Kandala JC, Kremer E, Kistler WS (1990) Gene 89:265–269

    Google Scholar 

  • Davies DR, Plaskitt A (1971) Genet Res 17:33–43

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395

    Google Scholar 

  • Devereux R, Loeblich AR III, Fox GE (1990) J Mol Evol 31:18–24

    Google Scholar 

  • Dietmater W, Fabry S, Schmitt R (1993) Nucleic Acids Res 21:3603–3604

    Google Scholar 

  • Doenecke D (1988) In: Kahl G (ed) Architecture of the eukaryotic genes. Verlag Chemie Weinheim, pp 123–141

    Google Scholar 

  • Felsenfeld G (1992) Nature 355:219–224

    Google Scholar 

  • Frischauf AM, Lehrach H, Poustka A, Murray NE (1983) J Mol Biol 170:827–842

    Google Scholar 

  • Gilbert W, Glynias M (1993) Gene 135:137–144

    Google Scholar 

  • Goldschmid-Clermont M (1986) Plant Mol Biol 6:13–21

    Google Scholar 

  • Gorman DS, Levine RP (1965) Proc Natl Acad Sci USA 54:1665–1669

    Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook. Academic Press, San Diego, California

    Google Scholar 

  • Hentschel CC, Birnstiel ML (1981) Cell 25:301–331

    Google Scholar 

  • Hereford LM, Fahrner K, Woolford J Jr, Rosbash M, Kaback DB (1979) Cell 18:1261–1271

    Google Scholar 

  • Iwai K, Hayashi H, Ishikawa K (1972) J Biochem 72:357–367

    Google Scholar 

  • Kirk MM, Kirk DL (1985) Cell 41:419–428

    Google Scholar 

  • Kornberg RD, Klug A (1981) Sci Am 244:48–60

    Google Scholar 

  • Lai Z-C, Childs G (1988) Moll Cell Biol 8:1842–1844

    Google Scholar 

  • Larson A, Kirk MM, Kirk DL (1992) Mol Biol Evol 9:85–105

    Google Scholar 

  • Lindauer A, Müller K, Schmitt R (1993) Gene 129:59–68

    Google Scholar 

  • Mages W, Salbaum JM, Harper JF, Schmitt R (1988) Mol Gen Genet 213:449–458

    Google Scholar 

  • Mages W, Cresnar B, Harper JF, Brüderlein M, Schmitt R (1995) Gene (in press)

  • Melin L, Soldati D, Mital R, Streit A, Schümperli D (1992) EMBO J 11:691–697

    Google Scholar 

  • Miller DJ, Harrison PL, Mahony TJ, McMillan JP, Miles A, Odorico DM, tenLohuis MR (1993) J Mol Evol 37:245–253

    Google Scholar 

  • Müller K, Schmitt R (1988) Nucleic Acids Res 16:4121–4135

    Google Scholar 

  • Müller K, Lindauer A, Brüderlein M, Schmitt R (1990) Gene 93:167–175

    Google Scholar 

  • Osley MA (1991) Annu Rev Biochem 60:827–861

    Google Scholar 

  • Rausch H, Larsen N, Schmitt R (1989) J Mol Evol 29:255–265

    Google Scholar 

  • Rodrigues JdA, Brandt WF, von Holt C (1988) Eur J Biochem 173:555–560

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning:a laboratory manual. Cold Spring Harbour Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sautiere P, Tyson D, Laine B, Mizon J, Ruffin P, Biserte G (1974) Eur J Biochem 41:563–576

    Google Scholar 

  • Schmitt R, Fabry S, Kirk DL (1992) Int Rev Cytol 139:189–265

    Google Scholar 

  • Schümperli D (1986) Cell 45:555–565

    Google Scholar 

  • Schümperli D (1986) Trens Genet 4:187–191

    Google Scholar 

  • Sellos D, Krawetz SA, Dixon GH (1990) Eur J Biochem 190: 21–29

    Google Scholar 

  • Smith MM, Andresson OS (1983) J Mol Bio 169:663–690

    Google Scholar 

  • Southern E (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Starr RC (1969) Arch Protistenkd 111:204–222

    Google Scholar 

  • Starr RC, Jaenicke L (1974) Proc Natl Acad Sci USA 71:1050–1054

    Google Scholar 

  • Streit A, Koning TW, Soldati D, Melin L, Schümperli D (1993) Nucleic Acids Res 21:1569–1575

    Google Scholar 

  • Suissa M (1983) Anal Biochem 133:511–514

    Google Scholar 

  • Sures I, Lowry J, Kedes L (1978) Cell 15:1033–1044

    Google Scholar 

  • Thatcher TH, Gorovsky MA (1994) Nucleic Acids Res 22:174–179

    Google Scholar 

  • Thoma F, Koller T, Klug A (1979) J Cell Biol 83:403–427

    Google Scholar 

  • Viera J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Wallis JH, Rykowski M, Grunstein M (1983) Cell 35:711–719

    Google Scholar 

  • Wells D, McBride C (1989) Nucleic Acids Res 17:r311-r346

    Google Scholar 

  • Wells D, Bains W, Kedes L (1986) J Mol Evol 23:224–241

    Google Scholar 

  • Wu M, Allis CD, Richman R, Cook RG, Gorovsky MA (1986) Proc Natl Acad Sci USA 83:8674–8678

    Google Scholar 

  • Yang PM, Katsura M, Nakayama T, Mikami K, Iwabuchi M (1991) Nucleic Acids Res 19:5077

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Kössel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabry, S., Müller, K., Lindauer, A. et al. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes. Curr Genet 28, 333–345 (1995). https://doi.org/10.1007/BF00326431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326431

Key words

Navigation