Skip to main content
Log in

The linear mitochondrial plasmid pAL2-1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The molecular characterization of an additional DNA species (pAL2-1) which was identified previously in a long-lived extrachromosomal mutant (AL2) of Podospora anserina revealed that this element is a mitochondrial linear plasmid. pAL2-1 is absent from the corresponding wild-type strain, has a size of 8395 bp and contains perfect long terminal inverted repeats (TIRs) of 975 bp. Exonuclease digestion experiments indicated that proteins are covalently bound at the 5′ termini of the plasmid. Two long, non-overlapping open reading frames, ORF1 (3,594 bp) and ORF2 (2847 bp), have been identified, which are located on opposite strands and potentially encode a DNA and an RNA polymerase, respectively. The ORF1-encoded polypeptide contains three conserved regions which may be responsible for a 3′–5′ exonuclease activity and the typical consensus sequences for DNA polymerases of the D type. In addition, an amino-acid sequence motif (YSRLRT), recently shown to be conserved in terminal proteins from various bacteriophages, has been identified in the amino-terminal part of the putative protein. According to these properties, this first linear plasmid identified in P. anserina shares all characteristics with invertrons, a group of linear mobile genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins RA, Kelley RL, Lambowitz AM (1986) Cell 47: 505–516

    Google Scholar 

  • Aleström P, Akusjarvi G, Petterson M, Petterson U (1982) J Biol Chem 257: 13492–13498

    Google Scholar 

  • Almasan A, Mishra NC (1990) Nucleic Acids Res 18: 5871–5877

    Google Scholar 

  • Belcour L, Begel O, Mosse MO, Vierny C (1981) Curr Genet 3: 13–21

    Google Scholar 

  • Belcour L, Vierny C (1986) EMBO J 5: 609–614

    Google Scholar 

  • Bernad A, Zaballos A, Salas M, Blanco L (1987) EMBO J 6: 4219–4225

    Google Scholar 

  • Bernad A, Blanco L, Lazaro JM, Martin G, Salas M (1989) Cell 59: 219–228

    Google Scholar 

  • Bertrand H, Chan BSS, Griffiths AJF (1985) Cell 41: 877–884

    Google Scholar 

  • Blanco L, Bernad A, Blasco MA, Salas M (1991) Gene 100: 27–38

    Google Scholar 

  • Chan BSS, Court DA, Vierula J, Bertrand H (1991) Curr Genet 20: 225–237

    Google Scholar 

  • Court DA, Bertrand H (1991) Nucleic Acids Res 19: 1714

    Google Scholar 

  • Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) Curr Genet 19: 129–137

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979) Mol Gen Genet 171: 239–250

    Google Scholar 

  • Cummings DJ, MacNeil IA, Domenico JM, Matsuura ET (1985) J Mol Biol 185: 659–680

    Google Scholar 

  • Dale RWK, McClure BA, Houchins JP (1985) Plasmid 13: 31–40

    Google Scholar 

  • Escarmis C, Salas M (1982) Nucleic Acids Res 10: 5785–5798

    Google Scholar 

  • Esser K (1974) In: King RC (ed) Handbook of genetics, vol I. Plenum Press, New York, pp 531–551

    Google Scholar 

  • Esser K (1985) In: Bergener M, Ermini M, Stähelin HB (eds) The 1984 Sandoz Lectures in Gerontology. Thresholds in aging. Academic Press, London, pp 3–20

    Google Scholar 

  • Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Springer Verlag, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Fisher RP, Clayton DA (1988) Mol Cell Biol 8: 3496–3509

    Google Scholar 

  • Fox TD (1987) Annu Rev Genet 21: 67–91

    Google Scholar 

  • Gessner-Ulrich K, Tudzynski P (1992) Curr Genet 21: 249–254

    Google Scholar 

  • Henikoff S (1984) Gene 28: 351–359

    Google Scholar 

  • Hishinuma F, Hirai K (1991) Mol Gen Genet 226: 97–106

    Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Nucleic Acids Res 12: 7581–7597

    Google Scholar 

  • Horvitz MS (1990) In: Fields BN, Knipe DM et al. (eds) Virology, 2nd edn. Raven Press Ltd., New York

    Google Scholar 

  • Hsieh J-C, Jung G, Eavitt MC, Ito J (1987) Nucleic Acids Res 15: 8999–9009

    Google Scholar 

  • Hsieh J-C, Yoo S-K, Ito J (1990) Proc Natl Acad Sci USA 87: 8665–8669

    Google Scholar 

  • Jung G, Leavitt MC, Ito J (1987) Nucleic Acids Res 15: 9088

    Google Scholar 

  • Kelley JL, Lehman IR (1986) J Biol Chem 261: 10340–10347

    Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) Mol Gen Genet 218: 523–530

    Google Scholar 

  • Kempken F, Hermanns J, Osiewacz HD (1992) J Mol Evol (in press)

  • Kotani H, Ishizaki Y, Hiraoka N, Obayashi A (1987) Nucleic Acids Res 15: 2657–2664

    Google Scholar 

  • Kruse B, Narasimhan N, Attardi G (1989) Cell 58: 391–397

    Google Scholar 

  • Kück U (1989) Exp Mycol 13: 111–120

    Google Scholar 

  • Kück U, Stahl U, Esser K (1981) Curr Genet 3: 151–156

    Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) Curr Genet 9: 373–382

    Google Scholar 

  • Kuzmin EV, Levchenko JV (1987) Nucleic Acids Res 15: 6758

    Google Scholar 

  • Kuzmin EV, Levchenko JV, Zaitseva GN (1988) Nucleic Acids Res 16: 4177

    Google Scholar 

  • Leavitt MC, Ito J (1987) Nucleic Acids Res 15: 5251–5259

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Marcou D (1961) Ann Sci Nat Bot 12: 653–764

    Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Cell 51: 89–99

    Google Scholar 

  • McGraw NJ, Bailey JN, Cleaves GR, Dembinski DR, Gocke CR, Joliffe LK, MacWright RS, McAllister WT (1985) Nucleic Acids Res 13: 6753–6766

    Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Curr Genet 17: 89–95

    Google Scholar 

  • Mizukami Y, Sekiya T, Hirokawa H (1986) Gene 42: 231–235

    Google Scholar 

  • Nargang FE, Bell JE, Strohl LL, Lambowitz AM (1984) Cell 38: 441–453

    Google Scholar 

  • Oeser B, Tudzynski P (1989) Mol Gen Genet 217: 132–140

    Google Scholar 

  • Osiewacz HD (1990) Mut Res 237: 1–8

    Google Scholar 

  • Osiewacz HD, Esser K (1984) Curr Genet 8: 299–305

    Google Scholar 

  • Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989) Mut Res 219: 9–15

    Google Scholar 

  • Paillard M, Sederhoff RR, Levings III CSL (1985) EMBO J 4: 1125–1128

    Google Scholar 

  • Paces V, Vlcek C, Urbanek P, Hostomsky Z (1985) Gene 38: 45–56

    Google Scholar 

  • Pring DR, Levings III CS, Hu WWL, Timothy DH (1977) Proc Natl Acad Sci USA 7: 2904–2908

    Google Scholar 

  • Robison M, Royer JC, Horgen PA (1991) Curr Genet 19: 495–502

    Google Scholar 

  • Rohe M, Schrage K, Meinhardt F (1991) Curr Genet 20: 527–533

    Google Scholar 

  • Sakaguchi K (1990) Microbiol Rev 54: 66–74

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74: 2611–2615

    Google Scholar 

  • Salas M (1988a) In: Calendar R (ed) The bacteriophages, vol 1. Plenum Press, New York London, pp 169–191

    Google Scholar 

  • Salas M (1988b) Curr Topics Microbiol Immunol 136: 69–88

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Savilathi H, Bamford DH (1987) Gene 57: 121–130

    Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Touw EPW, Tabak HF (1987) J Biol Chem 262: 12785–12791

    Google Scholar 

  • Schulte E, Kück U, Esser K (1988) Mol Gen Genet 211: 342–349

    Google Scholar 

  • Schulte E, Kück U, Esser K (1989) Plasmid 21: 79–84

    Google Scholar 

  • Smart JE, Stillman BW (1982) J Biol Chem 257: 13499–13506

    Google Scholar 

  • Sor F, Fukuhara H (1985) Curr Genet 9: 147–155

    Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Mol Gen Genet 162: 341–343

    Google Scholar 

  • Stam JC, Kwakman J, Meijer M, Stuitje AR (1986) Nucleic Acids Res 17: 6871–6884

    Google Scholar 

  • Stark MJR, Boyd AJ (1986) EMBO J 5: 1995–2002

    Google Scholar 

  • Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleic Acids Res 12: 6011–6030

    Google Scholar 

  • Tommasino M, Ricci S, Galeotti CL (1988) Nucleic Acids Res 16: 5863–5878

    Google Scholar 

  • Tudzynski P, Esser K (1979) Mol Gen Genet 173: 71–84

    Google Scholar 

  • Tudzynski P, Stahl U, Esser K (1982) Curr Genet 6: 219–222

    Google Scholar 

  • Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) Curr Genet 17: 195–201

    Google Scholar 

  • Yanish-Perron C, Vieira J, Messing J (1985) Gene 33: 103–119

    Google Scholar 

  • Yoshikawa H, Ito J (1982) Gene 17: 323–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermanns, J., Osiewacz, H.D. The linear mitochondrial plasmid pAL2-1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 22, 491–500 (1992). https://doi.org/10.1007/BF00326415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326415

Key words

Navigation