Skip to main content
Log in

Contrasting mutation rates in mitochondrial and nuclear genes of yeasts versus mammals

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Base substitutions have been compared in two mitochondrial and two nuclear genes from three yeasts and three mammals. In yeasts, the two mitochondrial genes, cytochrome oxidase subunit 2 (COX2) and apocytochrome b (CYB), have fewer changes on a percentage basis than the nuclear-encoded cytochrome c (CYC) gene. By contrast, in mammals, the same mitochondrial genes have more mutations than CYC on a percentage basis. Sequence comparisons of the nuclear small-subunit ribosomal RNA (nSSU) gene shows that there are more substitutions per unit length in the three yeasts than in the three mammals. This result suggests that although the yeasts are more distantly related than the mammals, their mitochondrial genes have accumulated fewer changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature 290:457–464

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton D (1981) Cell 26:167–180

    Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Proc Natl Acad Sci USA 76:1967–1971

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) J Mol Evol 18:225–239

    Google Scholar 

  • Brunner A, Coria R (1989) Yeast 5:209–218

    Google Scholar 

  • Cann RL Brown WM, Wilson AC (1984) Genetics 106:479–499

    Google Scholar 

  • Capaldi RA, Malastesta F, Darley-Usmar VM (1983) Biochim Biophys Acta 726:135–148

    Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) J Mol Evol 28:98–112

    Google Scholar 

  • Clark-Walker GD (1989) Proc Natl Acad Sci USA 86:8847–8851

    Google Scholar 

  • Clark-Walker GD, McArthur CR, Sriprakash KS (1985) EMBO J 4:465–473

    Google Scholar 

  • Coruzzi G, Tzagoloff A (1979) J Biol Chem 254:9324–9330

    Google Scholar 

  • Dams E, Hendriks L, Van de Peer Y, Neefs J-M, Smits G, Vandenbempt I, De Wachter R (1988) Nucleic Acids REs 16:r87-r172

    Google Scholar 

  • Evans MJ, Scarpulla RC (1988) Proc Natl Acad Sci USA 85:9625–9629

    Google Scholar 

  • Fournier A, Fleer R, Yeh P, Mayaux J-F (1990) Nucleic Acids Res 18:365

    Google Scholar 

  • Gadaleta G, Pepe G, DeCandia G, Quagliariello C, Sbisa E, Saccone C (1989) J Mol Evol 28:497–516

    Google Scholar 

  • Gray MW (1989) Annu Rev Cell Biol 5:25–50

    Google Scholar 

  • Hall J, Moubarak A, O'Brien P, Pan LP, Cho I, Millet F (1988) J Biol Chem 263:8142–8149

    Google Scholar 

  • Hampsey DM, Das G, Sherman F (1986) J Biol Chem 261:3259–3271

    Google Scholar 

  • Hardy CM, Clark-Walker GD (1990) Yeast 6:403–410

    Google Scholar 

  • Hardy CM, Galeotti CL, Clark-Walker GD (1989) Curr Genet 16:419–427

    Google Scholar 

  • Kadenbach B, Kuhn-Nentwig L, Guge U (1987) Curr Topics Bioenerg 15:113–161

    Google Scholar 

  • Limbach KJ, Wu R (1985) Nucleic Acids Res 13:617–630

    Google Scholar 

  • Maleszka R, Clark-Walker GD (1990) Nucleic Acids Res 18:1889

    Google Scholar 

  • Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayshi M, Koike K (1982) J Mol Evol 19:28–35

    Google Scholar 

  • Montgomery DL, Leung DW, Smith M, Shalit P, Faye G, Hall BD (1980) Proc Natl Acad Sci USA 77:541–545

    Google Scholar 

  • Morin GB, Cech TR (1988) Nucleic Acids Res 16:327–346

    Google Scholar 

  • Nobrega FG, Tzagoloff A (1980) J Biol Chem 255:9828–9837

    Google Scholar 

  • Palmer JD, Herbon LA (1988) J Mol Evol 28:87–97

    Google Scholar 

  • Ragnini A, Fukuhara H (1988) Nucleic Acids Res 17:8433–8442

    Google Scholar 

  • Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin KG, Bayev AA (1980) Nucleic Acids Res 8:5779–5794

    Google Scholar 

  • Saliola M, Shuster JR, Falcone C (1990) Yeast 6:193–204

    Google Scholar 

  • Scarpulla RC, Agne GM, Wu R (1981) J Biol Chem 256:6480–6486

    Google Scholar 

  • Shuster J, Moyer D, Irvine B (1987) Nucleic Acids Res 15:8573

    Google Scholar 

  • Smith M, Leung DW, Gillam S, Astell CR, Montgomery DL, Hall BD (1979) Cell 16:753–761

    Google Scholar 

  • Stark MJR, Milner JS (1989) Yeast 5:35–50

    Google Scholar 

  • Stiles JI, Friedman LR, Helms SC, Consaul S, Sherman F (1981) Mol Biol 148:331–346

    Google Scholar 

  • Tzagoloff A, Myers AM (1986) Annu Rev Biochem 55:249–285

    Google Scholar 

  • Wallace DC, Ye J, Neckelmann SN, Singh G, Webster KA, Greenberg BD (1987) Curr Genet 12:81–90

    Google Scholar 

  • Wolf K (1987) In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. SGM special publication 22. IRL Press, Oxford, pp 41–62

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Proc Natl Acad Sci USA 84:9054–9058

    Google Scholar 

  • Wong OC, Clark-Walker GD (1990) Nucleic Acids Res 18:1888

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Schweyen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark-Walker, G.D. Contrasting mutation rates in mitochondrial and nuclear genes of yeasts versus mammals. Curr Genet 20, 195–198 (1991). https://doi.org/10.1007/BF00326232

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326232

Key words

Navigation