Skip to main content
Log in

A nuclear suppressor overcomes defects in the synthesis of the chloroplast psbD gene product caused by mutations in two distinct nuclear genes of Chlamydomonas

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mutations in two distinct nuclear genes, called NAC 1 and AC-115, of the unicellular green alga Chlamydomonas reinhardtii cause a specific and dramatic reduction in the synthesis of the chloroplast-encoded D2 polypeptide of Photosystem II. The psbD transcript which encodes the D2 protein is present in the mutant strains, but protein pulse-labeling and immunoprecipitation experiments demonstrate that the synthesis of the D2 protein does not occur normally in these cells. These phenotypes are suppressed by an extragenic nuclear suppressor isolated from a pseudorevertant of a nac 1 mutant. This suppressor is neither allele- nor gene-specific in its suppression and is able to overcome the effects of two different mutations in the NAC 1 gene, as well as a mutation in AC-115. The suppressor seems to be specific in its ability to remedy blocks in psbD mRNA translation in the chloroplast. It is not able to restore the translation of another chloroplas-encoded rRNA which is blocked by another nuclear mutation. The suppressor may identify a new nuclear gene specifically involved in the synthesis of the D2 protein in the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber J, Andersson B (1992) Trends Biochem Sci 17:61–66

    Google Scholar 

  • Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M, Rochaix JD (1986) Plant Mol Biol 6:151–160

    Google Scholar 

  • Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kuck U, Bennoun P, Rochaix JD (1988) Cell 52:903–913

    Google Scholar 

  • Chua NH (1980) Methods Enzymol 69:434–446

    Google Scholar 

  • Costanzo MC, Fox TD (1990) Annu Rev Genet 24:91–113

    Google Scholar 

  • DeVitry C, Olive J, Drapier D, Recouvreur M, Wollman FA (1989) J Cell Biol 109:991–1006

    Google Scholar 

  • Drapier D, Girard-Bascou J, Wollman FA (1992) Plant Cell 4: 283–295

    Google Scholar 

  • Ebersold WT (1967) Science 157:447–449

    Google Scholar 

  • Erickson JM, Rahire M, Rochaix JD (1984) EMBO J 3:2753–2762

    Google Scholar 

  • Erickson JM, Rahire M, Malnoe P, Girard-Bascou J, Pierre Y, Bennoun P, Rochaix JD (1986) EMBO J 5:1745–1754

    Google Scholar 

  • Gamble PE, Mullet JE (1989) J Biol Chem 264:7236–7243

    Google Scholar 

  • Girard-Bascou J, Pierre Y, Drapier D (1992) Curr Genet 22:47–52

    Google Scholar 

  • Harris E (1989) The Chlamydomonas sourcebook. Academic Press, San Diego, California

    Google Scholar 

  • Hartnett ME, Newcomb JR, Hodson RC (1987) Plant Physiol 85:898–901

    Google Scholar 

  • Herrin D, Michaels A, Hickey E (1981) Biochim Biophys Acta 655:135–145

    Google Scholar 

  • Jarvik JW, Botstein D (1975) Proc Natl Acad Sci USA 72:2738–2742

    Google Scholar 

  • Jensen KH, Herrin DL, Plumley FG, Schmidt GW (1986) J Cell Biol 103:1315–1325

    Google Scholar 

  • Kuchka MR, Mayfield SP, Rochaix JD (1988) EMBO J 7:319–324

    Google Scholar 

  • Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix JD (1989) Cell 58:869–876

    Google Scholar 

  • Lehrach H, Diamond H, Wozney JM, Boedtker H (1977) Biochemistry 16:4743–4751

    Google Scholar 

  • Levine RP, Ebersold WT (1960) Annu Rev Microbiol 14:197–216

    Google Scholar 

  • Levine RP, Goodenough UW (1970) Annu Rev Genet 4:397–408

    Google Scholar 

  • Mattoo AK, Marder JB, Edelman M (1989) Cell 56:241–246

    Google Scholar 

  • Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Proc Natl Acad Sci USA 84:749–753

    Google Scholar 

  • Monod C, Goldschmidt-Clermont M, Rochaix JD (1992) Mol Gen Genet 231:449–459

    Google Scholar 

  • Nanba O, Satoh K (1987) Proc Natl Acad Sci USA 84:109–112

    Google Scholar 

  • Rochaix JD (1992) Annu Rev Cell Biol 8:1–28

    Google Scholar 

  • Rochaix JD, Erickson J (1988) Trends Biochem Sci 13:56–59

    Google Scholar 

  • Rochaix JD, Mayfield S, Goldschmidt-Clermont M, Erickson J (1988) Molecular biology of Chlamydomonas. In: Shaw CH (ed) Plant molecular biology: a practical approach. IRL Press, Oxford, pp 253–277

    Google Scholar 

  • Rochaix JD, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J, Bennoun P (1989) EMBO J 8:1013–1021

    Google Scholar 

  • Schmidt GW, Sieburth LE, Jensen KH, Greer KL, Plumley FG, Herrin DL (1987) Photosystem II biogenesis: roles of nuclear gene products. In: Biggins J (ed) Progress in photosynthetic research. Martinus Nijhoff Publishers, Dordrecht, pp 637–644

    Google Scholar 

  • Sieburth LE, Berry-Lowe S, Schmidt GW (1991) Plant Cell 3:175–189

    Google Scholar 

  • Stearns T, Botstein D (1988) Genetics 119:249–260

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 54:211–225

    Google Scholar 

  • Vermass W (1993) Annu Rev Plant Physiol Plant Mol Biol 44: 457–481

    Google Scholar 

  • Wurtz EA, Boynton JE, Gillham NW (1977) Proc Natl Acad Sci USA 74:4552–4556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.-D. Rochaix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H.Y., Kuchka, M.R. A nuclear suppressor overcomes defects in the synthesis of the chloroplast psbD gene product caused by mutations in two distinct nuclear genes of Chlamydomonas . Curr Genet 27, 263–269 (1995). https://doi.org/10.1007/BF00326159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326159

Key words

Navigation