Skip to main content
Log in

Multiphase chemistry of orographic clouds: observations at subalpine mountain sites

  • Lectures And Posters (Part I)
  • Analysis Of Inorganic Species In Hydrometeors
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Observations out of two cloud events at elevated sites in the Black Forest/Germany and in the Vosges Mtn./France, are presented. The cloud-water, the particulate matter, and the gas-phase have been characterized chemically. Besides main ions, both inorganic and organic, the data sets include 17 trace elements. The air masses pollutant loadings indicated strong anthropogenic influence. The dominant cloud-water solutes were ammonium, nitrate and sulfate, as well as acidity. The latter was even more important than ammonium to counterbalance the strong acid anions in cloud-water collected at the Vosges Mtn. site. Acidity reached up to pH 2.8 in that case, whereas at the Black Forest site pH of cloud-water samples was between 4.9 and 4.0. Organic acids contributed a substantial part to cloud-water acidity at the Vosges Mtn. site, 11% by average. The fractions of the trace species incorporated into cloud-water, have been estimated based on cloud-water and aerosol loadings and differences have been identified. In particular, in one cloud a different behaviour of nitrate and sulfate was indicated in such a way, that a smaller fraction of sulfate was incorporated. The interstitial aerosol was enriched in carbon when compared to pre-cloud and after-cloud situations. Most of the elements specified, in particular those, which are thought to be dominated by crustal sources, were incorporated into the cloud-water to a higher extent, when compared to carbon. An increase of the free acid content of particulate matter (on a mass per volume of sampled air basis) was observed in both after-cloud situations when compared to the respective pre-cloud situations. No information is available, however, about the relative significance of transport from the source regions to the sites and source strength on one hand, and microphysical and chemical processes in the multiphase system on the other hand, which both may have contributed to changes in aerosol composition. When collecting cloud-water simultaneously with a pair of identical collectors beneath and above a conifer canopy, a higher liquid water content was found above the canopy, whereas higher concentrations of most of the solvents were found in cloud-water beneath the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schütt P, Cowling EB (1985) Plant Dis 69:548–558

    Google Scholar 

  2. Tomlinson GH (1990) Effects of acid deposition on the forests of Europe and North America. CRC Press, Boca Raton, Florida

    Google Scholar 

  3. Grunow J (1955) Forstw Zbl 74:21–36

    Google Scholar 

  4. Acevedo J, Morgan DL (1974) Ecology 55:1135–1141

    Google Scholar 

  5. Dollard GJ, Unsworth MH, Harve MJ (1983) Nature 302: 241–243

    Google Scholar 

  6. Unsworth MH (1984) Nature 312:262–264

    Google Scholar 

  7. Granett AL, Musselman RC (1984) Atmos Environ 18:887–890

    Google Scholar 

  8. Fowler D, Cape JN, Deans JD, Leith ID, Murray MB, Smith RI, Sheppard LJ, Unsworth MH (1989) New Phytol 113:321–335

    Google Scholar 

  9. Johnson AH, Vann DR, Strimbeck GR (1990) Proc of Internal Conference on Acidic Deposition, Glasgow 16–21 Sept 1990 (in press)

  10. Twomey S (1957) Weather 12:120–122

    Google Scholar 

  11. Vogelmann HW, Siccama T, Leedy D, Ovitt DC (1968) Ecology 49:1205–1207

    Google Scholar 

  12. Lovett GM (1984) Atmos Environ 18:361–371

    Google Scholar 

  13. Saxena VK, Stogner RE, Hendler AH, DeFelice TP, Yeh RJY, Lin NH (1989) Tellus 41B:92–109

    Google Scholar 

  14. Saxena VK, Lin NH (1990) Atmos Environ 24A:329–352

    Google Scholar 

  15. Nagel JF (1956) Quart J Royal Met Soc 82:452–460

    Google Scholar 

  16. Ekern PC (1964) Proc Soil Sci Soc Am 28:419–421

    Google Scholar 

  17. Mrose H (1966) Tellus 18:266–270

    Google Scholar 

  18. Okita T (1968) J Met Soc Japan 46:120–126

    Google Scholar 

  19. Falconer RE, Falconer PD (1980) J Geophys Res 85:7465–7470

    Google Scholar 

  20. Schmitt G (1987): Methoden und Ergebnisse der Nebelanalyse. Berichte des Instituts für Meteorologie und Geophysik, vol 72, Universität Frankfurt/Main

  21. Hill TA, Choularton TW, Penkett SA (1986) Atmos Environ 20:1763–1771

    Google Scholar 

  22. Mohnen VA, Kadlecek JA (1989) Tellus 41B:79–91

    Google Scholar 

  23. Kroll G, Winkler P (1989) In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 205–211

    Google Scholar 

  24. Collett JL, Daube BC, Gunz D, Hoffmann MR (1990) Atmos Environ 24A:1741–1757

    Google Scholar 

  25. Baumbach G, Baumann K (1989) In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 37–44

    Google Scholar 

  26. ASPA (1990) Association pour la surveillance et l'étude de la pollution atmosphérique en Alsace, Strasbourg, France, monthly reports

  27. Colin JL, Renard D, Lescoat V, Jaffrezo JL (1989) Atmos Environ 23:1487–1498

    Google Scholar 

  28. Berner A (1988) Sci Total Environ 73:217–228

    Google Scholar 

  29. Enderle KH, Jaeschke W (1988) In: Enderle KH, Jaeschke W (eds) Chemistry and physics of fogwater collection. BPT-Bericht 6/88, GSF Munich, Germany, pp 7–74

    Google Scholar 

  30. Berner A, Reischl G, Enderle KH, Jaeschke W, Fuzzi G, Facchini MC (1988) Sci Total Environ 77:133–140

    Google Scholar 

  31. Dlugi R, Jordan S, Manegold S, Mätzing H (1987) Report KfK-PEF No 29, Karlsruhe, Germany

  32. Gieray R (1990) University of Hohenheim, Stuttgart, Germany (personal communication)

  33. Jaeschke W (1986) In: Jaeschke W (ed) Chemistry of multiphase atmospheric systems. Springer, Berlin Heidelberg New York, pp 3–40

    Google Scholar 

  34. Beltz N (1988) Umweltdata, Königstein, Germany (personal communication)

  35. Possanzini M, Febo A, Liberti A (1983) Atmos Environ 17: 2605–2610

    Google Scholar 

  36. Lammel G (1991) Fresenius J Anal Chem (next issue)

  37. Winkler P (1980) J Geophys Res 85:4481–4486

    Google Scholar 

  38. Deister U, Neeb R, Helas G, Warneck P (1986) J Phys Chem 90:3213–3217

    Google Scholar 

  39. Davies DM, Ivey JP (1987) Anal Chim Acta 194:275–279

    Google Scholar 

  40. Countess RJ (1990) Aerosol Sci Technol 12:114–121

    Google Scholar 

  41. Hering SV, Appel BR, Cheng W, Salaymeh F, Cadle SH, Mulawa PA, Cahill TA, Eldred RA, Surovik M, Fitz D, Howes JE, Knapp KT, Stockburger L, Turpin BJ, Huntzicker JJ, Zhang XQ, McMurry PH (1990) Aerosol Sci Technol 12:200–213

    Google Scholar 

  42. Lammel G, Metzig G (1991) Report KfK-PEF, Karlsruhe, Germany (in press)

  43. Lammel G, Metzig G, Wagner-Ambs M (1990) Report KfK-PEF 61:563–573, Karlsruhe, Germany

    Google Scholar 

  44. Johnson CA, Sigg L, Zobrist J (1987) Atmos Environ 21:2365–2374

    Google Scholar 

  45. Winkler P (1989) In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 205–211

    Google Scholar 

  46. Schmitt G (1989) In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 213–220

    Google Scholar 

  47. Munger JW, Collett J, Daube B, Hoffmann MR (1989) Atmos Environ 23:2305–2320

    Google Scholar 

  48. Jacob DJ, Waldman JM, Munger JW, Hoffmann MR (1985) Environ Sci Technol 19:730–736

    Google Scholar 

  49. Jacob DJ, Munger JW, Waldman JM, Hoffmann MR (1986) J Geophys Res 91:1073–1088

    Google Scholar 

  50. Fuzzi S (1988) In: Unsworth MH, Fowler D (eds) Acid deposition to high elevation sites. Kluwer, Dordrecht, pp 443–452

    Google Scholar 

  51. Fuzzi S, Orsi G, Nardini G, Facchini MC, McLaren S, McLaren E, Mariotti M (1988) J Geophys Res 93:11141–11151

    Google Scholar 

  52. Lindberg SE, Stilsbee D, Schaefer DA, Owens JG, Petty W (1988) In: Unsworth MH, Fowler D (eds) Acid deposition to high elevation sites. Kluwer, Dordrecht, pp 321–344

    Google Scholar 

  53. Weathers KC, Likens GE, Bormann FH, Eaton JS, Kimball KD, Galloway JN, Siccama TG, Smiley D (1988) In: Unsworth MH, Fowler D (eds) Acid deposition to high elevation sites. Kluwer, Dordrecht, pp 345–357

    Google Scholar 

  54. Ruprecht H, Sigg L (1990) Atmos Environ 24A:573–584

    Google Scholar 

  55. Facchini MC, Fuzzi S, Lind J, Orsi G (1990) In: Restelli G, Angeletti G (eds) Physico-chemical behaviour of atmospheric pollutants. Kluwer, Dordrecht, pp 505–509

    Google Scholar 

  56. Collett JL, Daube BC, Munger JW, Hoffmann MR (1989) Atmos Environ 23:999–1007

    Google Scholar 

  57. Warneck P, Klippel W, Moortgat GK (1978) Ber Bunsenges Phys Chem 82:1136–1142

    Google Scholar 

  58. Munger JW, Jacob DJ, Waldman JM, Hoffmann MR (1983) J Geophys Res 88:5109–5121

    Google Scholar 

  59. Trautner F (1989) Entwicklung und Anwendung von Meßsystemen zur Untersuchung der chemischen und physikalischen Eigenschaften von Nebelwasser und dessen Deposition auf Fichten. Thesis, University of Bayreuth, Germany

    Google Scholar 

  60. Pruppacher JR, Klett JD (1978) Microphysics of clouds and precipitation. Reidel, Dordrecht

    Google Scholar 

  61. Hänel G (1987) Beitr Phys Atmos 60:321–339

    Google Scholar 

  62. Hegg DA, Hobbs PV, Radke LF (1984) Atmos Environ 18:1939–1946

    Google Scholar 

  63. Warneck P (1986) In: Jaeschke W (ed) Chemistry of multiphase atmospheric systems. NATO ASI Ser vol G6. Springer, Berlin Heidelberg New York, pp 473–499

    Google Scholar 

  64. Yoshizumi K, Aoki K, Nouchi I, Okita T, Kobayashi T, Kamakura S, Tajima M (1984) Atmos Environ 18:395–401

    Google Scholar 

  65. Schwartz SE (1984) In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms. Butterworth, Boston, pp 173–208

    Google Scholar 

  66. Howell WE (1949) J Meteorol 15:1999–2009

    Google Scholar 

  67. Hudson JG, Rogers CF (1986) J Atmos Sci 43:2341–2359

    Google Scholar 

  68. Perdue EM, Beck KC (1988) J Geophys Res 93:691–698

    Google Scholar 

  69. Schwartz SE (1986) In: Jaeschke W (ed) Chemistry of multiphase atmospheric systems. NATO ASI Ser vol G6. Springer, Berlin Heidelberg New York, pp 415–471

    Google Scholar 

  70. Twohy CH, Austin PH, Charlson RJ (1989) Tellus 41B:51–60

    Google Scholar 

  71. Pandis SN, Seinfeld JH, Pilinis C (1990) Atmos Environ 24A:1957–1969

    Google Scholar 

  72. Noone KJ, Charlson RJ, Covert DS, Ogren JA, Heintzenberg J (1988) J Geophys Res 93:9477–9482

    Google Scholar 

  73. Hering SV, Blumenthal DL, Brewer RL, Gertler A, Hoffmann MR, Kadlecek JA, Pettus K (1987) Environ Sci Technol 21:654–663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammel, G., Metzig, G. Multiphase chemistry of orographic clouds: observations at subalpine mountain sites. Fresenius J Anal Chem 340, 564–574 (1991). https://doi.org/10.1007/BF00322431

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322431

Keywords

Navigation