Skip to main content
Log in

Anion exchangers functionalized by chelating reagents (AnChel) for preconcentration of trace elements: Capabilities and limitations

  • General And Inorganic Analysis
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Conventional anion exchangers (e.g., Adsorbex SAX, Amberlite IRA 410, Dowex 1X8, Lewatit MP 5080, TEAE cellulose) functionalized by means of sulfonated metal reagents (e.g., Arsenazo III, Eriochrome Red B, 8-hydroxyquinoline-5-sulfonic acid, Tiron and others) were investigated as collectors (AnChel) for analytical preconcentration of trace elements. In particular, the stability of AnChel strongly depending on competing anions, on the anion exchanger and on the metal reagent chosen, was characterized. Accordingly, for appropriate combinations of AnChel (e.g., Dowex 1X8/Arsenazo III) reagent distribution coefficients Kd in the range 104 to 105 (ml/g) could be attained on polystyrene-based anion exchangers even in concentrated salt solutions (e.g., 4 mol/l NaCl), but not on hydrophilic exchangers (e.g., SAX, TEAE cellulose). In general, the stability of AnChel against competing anions followed the order Cl>SO 2−4 >NO 3 >ClO 4 . Reagent loadings of about 1 mmol/g (e.g., 8-hydroxyquinoline S) on the anion exchangers were obtainable. Trace metals precomplexed with the reagents cited could be separated (>90%) within 5 min and remobilized by acid (e.g. 2 mol/l HNO3) within some 10 s (batch procedure). Using small columns filled with anion exchanger (e.g., 0.25 g Dowex 1X8) fast trace-matrix separations were carried out with 8-hydroxyquinoline S (Cu, Fe, In, Mn, Pb, Zn) in MgCl2 solutions and with Arsenazo III (U, Th) in AlCl3 solution, respectively. For subsequent trace determinations the flame-AAS (injection technique) was applied, except for Th and U [quantified by total reflection X-ray fluorescence (TXRF)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizuike A (1983) Enrichment techniques for inorganic trace analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Cresser MS (1978) Solvent extraction in flame spectroscopic analysis. Butterworth, London Boston

    Google Scholar 

  3. Mizuike A (1983) Enrichment techniques for inorganic trace analysis. Springer, Berlin Heidelberg New York, pp 61–66

    Google Scholar 

  4. Burba P, Willmer PG (1985) Fresenius Z Anal Chem 321:109–118

    Google Scholar 

  5. Berndt H, Harms U, Sonneborn M (1985) Fresenius Z Anal Chem 322:329–333

    Google Scholar 

  6. Burba P, Willmer PG (1987) Fresenius Z Anal Chem 329:539–545

    Google Scholar 

  7. Batley GE, Matousek JP (1980) Anal Chem 52:1570–1574

    Google Scholar 

  8. Castillo JR, Mir JM, Garcia-Ruiz ME, Bendicho C (1990) Fresenius Z Anal Chem 338:721–726

    Google Scholar 

  9. Prakash N, Csanady G, Michaelis MRA, Knapp G (1989) Microchim Acta 1989(III):257–265

    Google Scholar 

  10. Myasoedova GV, Savvin SB (1986) CRC Crit Rev Anal Chem 12:1–67

    Google Scholar 

  11. Wen ZB, Grote M, Kettrup A (1985) Fresenius Z Anal Chem 322:294–299

    Google Scholar 

  12. Csanady G, Prakash N, Wegscheider W, Müller K, Knapp G (1989) Angew Makromol Chem 170:159–172

    Google Scholar 

  13. Fujimoto M, Nakatsukasa Y (1962) Anal Chim Acta 26:427–433

    Google Scholar 

  14. Kemula W, Brajter K (1970) Chemia analit (Warsaw) 15:331–344

    Google Scholar 

  15. Takahashi T, Imamura T, Fujimoto M (1973) Mikrochim Acta 1973:69–76

    Google Scholar 

  16. Ohzeki K, Minorikawa M, Yokota F, Nukatsuky I, Ishida R (1990) Analyst 115:23–28

    Google Scholar 

  17. Going JE, Wesenberg G, Andrejat G (1976) Anal Chim Acta 81:349–360

    Google Scholar 

  18. Tanaka H, Chikuma M, Harada A, Ueda T, Yube S (1976) Talanta 23:489–491

    Google Scholar 

  19. Brajter K, Dabek-Zlotorzynska E (1980) Talanta 27:19–24

    Google Scholar 

  20. Shriadah M, Ohzeki K (1985) Analyst 110:677–679

    Google Scholar 

  21. Sarzanini C, Mentasti E, Gennaro MC, Marengo E (1985) Anal Chem 57:1960–1963

    Google Scholar 

  22. Grote M, Wigge P, Kettrup A (1982) Fresenius Z Anal Chem 310:369–377

    Google Scholar 

  23. Nakayama M, Chikuma M, Tanaka H, Tanaka T (1982) Talanta 29:503–506

    Google Scholar 

  24. Schwedt G, Sicker U (1983) Laborpraxis 1983:816–823

    Google Scholar 

  25. Brajter K, Olbrych-Sleszynska E (1983) Talanta 30:355–358

    Google Scholar 

  26. Nakayama M, Itoh K, Chikuma M, Sakurai H, Tanaka H (1984) Talanta 31:269–274

    Google Scholar 

  27. Sarzanini C, Mentasti E, Porta V, Gennaro MC (1987) Anal Chem 59:484–486

    Google Scholar 

  28. Sarzanini C, Gennaro MC, Porta V, Mentasti E (1987) Anal Chim Acta 198:191–196

    Google Scholar 

  29. Porta V, Sarzanini C, Mentasti E (1989) Microchim Acta 1989(III):247–255

    Google Scholar 

  30. Abollino O, Mentasti M, Porta V, Sarzanini C (1990) Anal Chem 62:21–26

    Google Scholar 

  31. Pesavento M, Profumo A, Biesuz R (1988) Talanta 35:431–437

    Google Scholar 

  32. Burba P (1989) Fresenius Z Anal Chem 334:357–358

    Google Scholar 

  33. Sarzanini C, Mentasti E, Gennaro MC, Porta V, Volpe P (1986) Talanta 33:835–837

    Google Scholar 

  34. Tschöpel P, Kotz L, Schulz W, Veber M, Tölg G (1980) Fresenius Z Anal Chem 302:1–14

    Google Scholar 

  35. Berndt H, Jackwerth H (1976) At Absorpt Newsl 15:109–115

    Google Scholar 

  36. Burba P, Willmer PG, Becker M, Klockenkämper R (1989) Spectrochim Acta 44B:525–532

    Google Scholar 

  37. Strelow FWE, van der Walt TN (1979) Talanta 26:537–542

    Google Scholar 

  38. Kudermann G (1988) Fresenius Z Anal Chem 331:697–706

    Google Scholar 

  39. Blödorn W, Burba P, Jäger H (1991) Trace element determination in contaminated soil solutions and landfill leachates by atomic spectrometry: a comparison of different preconcentration procedures, 1991 European Winter Conference on Plasma Spectrochemistry, January 14–18, 1991, Dortmund (FRG)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burba, P. Anion exchangers functionalized by chelating reagents (AnChel) for preconcentration of trace elements: Capabilities and limitations. Fresenius J Anal Chem 341, 709–715 (1991). https://doi.org/10.1007/BF00321572

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321572

Keywords

Navigation