Skip to main content
Log in

Automated trace analysis of airborne C1- and C2-halocarbons

  • Lectures And Posters (Part II)
  • Organic Species In Hydrometeors And In The Gas Phase
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Representative concentrations of volatile halocarbons in ambient air are determined by automated, repetitive sampling with sorbent-packed traps, followed by on-line thermodesorption, stationary-phase focussing, capillary gas chromatography, and electron-capture detection. Cryogenic enrichment and the associated problem of water-collection are avoided by ambient trapping using micro-traps packed with organic polymer- and carbon molecular-sieve sorbents. Under optimization of flow conditions and by use of thick-film capillaries, components with boiling points even below ambient temperature can be analyzed on-line by capillary gas chromatography, without the need for cryogenic peak focussing during injection. Data storage, quantification, statistical evaluation, and graphics generation are performed with commercial software programs. The instrumentation can be adapted for monitoring chemically stable volatile trace components with low and medium polarity. The results obtained with the instrumentation show that atmospheric levels of the major C1/C2-halocarbons may fluctuate over short time intervals; therefore, several hundred values must be accumulated for comparison of air pollutant burdens at different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molina MJ, Rowland FS (1974) Nature 249:810–812

    Google Scholar 

  2. Wang WC, Yung YL, Lacis AA, Mo T, Hansen JE (1976) Nature 194:685–690

    Google Scholar 

  3. Frank H (1991) Ambio, in press

  4. Wallace LA (1987) The total exposure assessment methodology (TEAM) study. EPA, Washington DC

    Google Scholar 

  5. Georgopoulos PG, Seinfeld JH (1982) Environ Sci Technol 16:401A-416A

    Google Scholar 

  6. Frank W, Frank H (1990) Atmos Environ 24A:1735–1739

    Google Scholar 

  7. Bauer U (1981) Zbl Bakt Hyg I Abt Orig B 174:200–237

    Google Scholar 

  8. Kirschmer P, Ballschmiter K (1983) Int J Environ Anal Chem 14:275–284

    Google Scholar 

  9. Reineke FJ, Bächmann K (1985) J Chromatogr 323:323–329

    Google Scholar 

  10. Müller S, Oehme M (1990) J High Resol Chromatogr 13:34–39

    Google Scholar 

  11. Phillips JB, Valentin JR, Carle GC (1982) ASTM Special Technical Publication 786:135–141

    Google Scholar 

  12. Frank W, Frank H (1990) Chromatographia 29:571–574

    Google Scholar 

  13. Grob K, Artho A, Frauenfelder C, Roth I (1990) J High Resol Chromatogr 13:257–260

    Google Scholar 

  14. Grob K, Grob GJ (1983) J High Resol Chromatogr 6:133–139

    Google Scholar 

  15. Abramovitz M, Stegun IA (eds) (1984) Pocket book of mathematical functions. Harri Deutsch, Thun Frankfurt/Main

    Google Scholar 

  16. Lillian D, Singh HB, Appleby A, Lobban LA (1976) J Environ Sci Health A11:687–710

    Google Scholar 

  17. Simmonds PG (1981) J Chromatogr Libr 20:255–274

    Google Scholar 

  18. Prinn RG, Simmonds PG, Rasmussen RA, Rosen RD, Alyea FN, Cardelino CA, Crawford AJ, Cunnold DM, Fraser PJ, Lovelock JE (1983) J Geophys Res 88:8353–8367

    Google Scholar 

  19. Frank H, Dürk H (1983) Arch Toxicol 53:213–223

    Google Scholar 

  20. Kirschmer P, Ballschmiter K (1983) Int J Environ Anal Chem 14:275–284

    Google Scholar 

  21. Rudolph J, Ehhalt DH, Khedim A, Jebsen C (1981) J Chromatogr 217:301–310

    Google Scholar 

  22. Jeltes R, Burghardt E (1972) Atmos Environ 6:793–805

    Google Scholar 

  23. D'Ottavio TW, Goodrich RW, Dietz RN (1986) Environ Sci Technol 20:100–104

    Google Scholar 

  24. Persson KA, Berg S (1989) Chromatographia 27:55–59

    Google Scholar 

  25. McClenny WA, Pleil JD, Holdren MW, Smith RN (1984) Anal Chem 56:2947–2951

    Google Scholar 

  26. Noy T, Fabian B, Borchers R, Janssen F, Cramers C, Rijks J (1987) J Chromatogr 393:343–356

    Google Scholar 

  27. Figge K, Rabel W, Wieck A (1987) Fresenius Z Anal Chem 327:261–278

    Google Scholar 

  28. Raymond A, Guichon G (1975) J Chromatogr Sci 13:173–177

    Google Scholar 

  29. Senum GI (1981) Environ Sci Technol 15:1073–1075

    Google Scholar 

  30. Huber JFK, Lauer HH, Poppe H (1975) J Chromatogr 112:377–388

    Google Scholar 

  31. Cramers CA, Rijks J, Bocek P (1972) J Chromatogr 65:29–37

    Google Scholar 

  32. Appleby A, Kazazis J, Lillian D, Singh HB (1976) J Environ Sci Health A11:711–715

    Google Scholar 

  33. Boyce SD, Hornig JF (1983) Water Res 17:685–697

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to J. F. K. Huber on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, H., Frank, W., Neves, H.J.C. et al. Automated trace analysis of airborne C1- and C2-halocarbons. Fresenius J Anal Chem 340, 678–683 (1991). https://doi.org/10.1007/BF00321534

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321534

Keywords

Navigation