Skip to main content
Log in

The fine structure of differentiating muscle in the salamander tail

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Thin methacrylate sections of developing tails of Amblystoma opacum larvae were examined in the electron microscope and a series of stages in the differentiation of the myotome musculature was reconstructed from electron micrographs and earlier light microscopic studies of living muscle. The earliest muscle cell precursor that can be clearly identified is a round or oval cell with abundant cytoplasm containing scattered myofilaments and free ribonucleoprotein granules, but little endoplasmic reticulum. These cells sometimes form a syncytium and they may also be fused with adjacent formed muscle fibers by lateral processes. Nuclei are large and nucleoli are prominent. This cell, called a “myoblast” here, is distinctly different in its appearance from the adjacent mesenchymal cells which have abundant granular endoplasmic reticulum. The earliest myofilaments are of both the thick and thin varieties and are distributed in a disorganized fashion in the cytoplasm. These filaments are similar to the actin and myosin filaments described by Huxley and they are present in the cytoplasm at an earlier stage of differentiation than heretofore suspected from light microscopy studies. The first myofibrils are a heterogeneous combination of thick and thin filaments and dense Z bands and are not homogeneous as so many light microscopists have contended. As development progresses, cross striations become more orderly and definitive sarcomeres are formed. Thereafter, new myofilaments and Z bands seem to be added to the lateral surfaces and distal ends of existing myofibrils.

Free ribonucleoprotein granules are a prominent part of the myoblast cytoplasm and are found in close association with the differentiating myofilaments in all stages of development. In early muscle fibers and some of the formed fibers, similar granules are often concentrated in the I bands. A theory of myofilament differentiation based on current concepts of the role of ribonucleoprotein in protein synthesis is presented in the discussion. Stages in myofibril formation and possible relationships of the filaments in developing muscle cells to other types of cytoplasmic filaments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbrook, D.: An electron microscopic study of regenerating skeletal muscle. J. Anat. (Lond.) 96, 137–152 (1962).

    Google Scholar 

  • Aronson, J.: Sarcomere size in developing muscles of a tarsonemid mite. J. biophys. biochem. Cytol. 11, 147–156 (1961).

    Google Scholar 

  • Astbury, W. T.: X-ray and electron microscope studies, and their cytological significance, of the recently discovered muscle proteins, tropomyosin and actin. Exp. Cell Res., Suppl. 1, 234–246 (1949).

    Google Scholar 

  • Bardeen, C. R.: The development of the musculature of the body wall in the pig, including its histogenesis and its relations to the myotomes and to the skeletal and nervous apparatus. Johns Hopk. Hosp. Rep. 9, 367–400 (1900).

    Google Scholar 

  • Bennett, H. S., and J. H. Luft: s-Collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol. 6, 113–114 (1959).

    Google Scholar 

  • Bintliff, S., and B. E. Walker: Radioautographic study of skeletal muscle regeneration. Amer. J. Anat. 106, 233–265 (1960).

    Google Scholar 

  • Boyd, J. D.: In: The structure and function of muscle, vol. 1, pp. 63–85. Edit. by G. H. Bourne. New York: Academic Press 1960.

    Google Scholar 

  • Brachet, J.: Chemical embryology. New York: Interscience Publishers, Inc. 1950.

    Google Scholar 

  • Breemen, V. L. van: Myofibril development observed with the electron microscope. Anat. Res. 113, 179–196 (1952).

    Google Scholar 

  • Caro, L. G.: Electron microscopic radioautography of thin sections: The Golgi zone as a site of protein concentration in pancreatic acinar cells. J. biophys. biochem. Cytol. 10, 37–46 (1961).

    Google Scholar 

  • Duesberg, J.: Les chondriosomes des cellules embryonnaires du poulet, et leur rôle dans la genèse des myofibrilles, avec quelques observations sur le développement des fibres musculaires striées. Arch. Zellforsch. 4, 602–671 (1910).

    Google Scholar 

  • Ebert, J. D.: In: Aspects of synthesis and order in growth, pp. 69–112. Edit. by D. Rudnick. Princeton: Princeton University Press 1954.

    Google Scholar 

  • Engel, W. K., and B. Horvath: Myofibril formation in cultured skeletal muscle cells studied with antimyosin fluorescent antibody. J. exp. Zool. 144, 209–224 (1960).

    Google Scholar 

  • Eycleshymer, A. C.: The cytoplasmic and nuclear changes in the striated muscle cell of Necturus. Amer. J. Anat. 3, 285–310 (1904).

    Google Scholar 

  • Fawcett, D. W.: In: Frontiers in cytology, pp. 19–41. Edit. by S. L. Palay. New Haven: Yale University Press 1958.

    Google Scholar 

  • —, and C. C. Selby: Observations on the fine structure of the turtle atrium. J. biophys. biochem. Cytol. 4, 63–72 (1958).

    Google Scholar 

  • Ferris, W.: Electron microscope observations of the histogenesis of striated muscle. Anat. Rec. 133, 275 (1959a).

    Google Scholar 

  • - Electron microscope observations of early myogenesis in the chick embryo. A dissertation submitted to the Faculty of the Department of Zoology, Univ. of Chicago, in partial fulfillment of the requirements for the degree of Doctor of Philosophy (1959b).

  • Gilev, V. P.: In: Fourth Int. Conf. on Electron Microscopy, vol. II, pp. 321–324. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Godlewski, E.: Die Entwicklung des Skelet-und Herzmuskelgewebes der Säugetiere. Arch. mikr. Anat. 60, 111–156 (1902).

    Google Scholar 

  • Godman, G. C.: In: Frontiers in cytology, pp. 381–416. Edit. by S. L. Palay. New Haven: Yale University Press 1958.

    Google Scholar 

  • Häggqvist, G.: Über die Entwicklung der querstreifigen Myofibrillen beim Frosche. Anat. Anz. 52, 389–404 (1920).

    Google Scholar 

  • Hay, E. D.: Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Develop. Biol. 1, 555–585 (1959).

    Google Scholar 

  • —: Fine structure of differentiating muscle in developing myotomes of Amblystoma opacum larvae. Anat. Rec. 139, 236 (1961a).

    Google Scholar 

  • —: Fine structure of an unusual intracellular supporting network in the Leydig cells of Amblystoma epidermis. J. biophys. biochem. Cytol. 10, 457–463 (1961b).

    Google Scholar 

  • —: In: Regeneration, pp.177–210. Edit. by D. Rudnick. New York: Ronald Press Co. 1962.

    Google Scholar 

  • Heidenhain, M.: Beiträge zur Aufklärung des wahren Wesens der faserförmigen Differenzierung. Anatl. Anz. 16, 97–131 (1899).

    Google Scholar 

  • Herrman, H.: Studies of muscle development. Ann. N.Y. Acad. Sci. 55, 99–108 (1952).

    Google Scholar 

  • Hibbs, R. G.: Electron microscopy of developing cardiac muscle in chick embryos. Amer. J. Anat. 99, 17–52 (1956).

    Google Scholar 

  • Holtzer, H., J. M. Marshall and H. Finck: An analysis of myogenesis by the use of fluorescent antimyosin. J. biophys. biochem. Cytol. 3, 705–725 (1957).

    Google Scholar 

  • Huxley, H. E.: The double array of filaments in cross-striated muscle. J. biophys. biochem. Cytol. 3, 631–648 (1957).

    Google Scholar 

  • —: In Fifth Int. Congr. for Electron Microscopy, vol. 2, pp. 0–1. New York: Academic Press 1962.

    Google Scholar 

  • —, and J. Hanson: The structural basis of the contraction mechanism in striated muscle. Ann. N.Y. Acad. Sci. 81, 403–408 (1959).

    Google Scholar 

  • Jordan, H. E.: Studies on striped muscle structure. VII. The development of the sarcostyle of the wing muscle of the wasp, with a consideration of the physicochemical basis of contraction. Anat. Rec. 19, 97–123 (1920).

    Google Scholar 

  • Katznelson, Z. S.: Histogenesis of muscular tissue in Amphibia. I. Development of striated muscles from mesenchyma in Urodeles. Anat. Rec. 61, 109–130 (1934).

    Google Scholar 

  • Konigsberg, I. R., N. McElvain, M. Tootle and H. Herrman: The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J. biophys. biochem. Cytol. 8, 333–343 (1960).

    Google Scholar 

  • Leblond, C.P., H. Puchtler and Y. Clermont: Structures corresponding to terminal bars and terminal web in many types of cells. Nature (Lond.) 186, 784–788 (1960).

    Google Scholar 

  • Lewis, M. R.: The development of cross-striations in the heart muscle of the chick embryo. Bull. Johns Hopk. Hosp. 30, 176–181 (1919).

    Google Scholar 

  • Lindner, E.: Submikroskopische Untersuchungen über die Herzentwicklung beim Hühnchen. Verh. anat. Ges. 54, 305–317 (1957).

    Google Scholar 

  • —: Myofibrils in the early development of chick embryo hearts as observed with the electron microscope. Anat. Rec. 136, 234–235 (1960).

    Google Scholar 

  • MacCallum, J. B.: On the histogenesis of the striated muscle fibre, and the growth of the human sartorius muscle. Bull. Johns Hopk. Hosp. 9, 208–215 (1898).

    Google Scholar 

  • McGill, C.: The early histogenesis of striated muscle in the oesophagus of the pig and the dogfish. Anat. Rec. 4, 23–47 (1910).

    Google Scholar 

  • Meves, F.: Über Neubildung quergestreifter Muskelfasern nach Beobachtungen am Hühnerembryo. Anat. Anz. 34, 161–165 (1909).

    Google Scholar 

  • Morpurgo, B.: Über die postembryonale Entwicklung der quergestreiften Muskeln von weißen Ratten. Anat. Anz. 15, 200–206 (1898).

    Google Scholar 

  • Moscona, A.: Cytoplasmic granules in myogenic cells. Exp. Cell Res. 9, 377–380 (1955).

    Google Scholar 

  • Muir, A. R.: An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit. J. biophys. biochem. Cytol. 3, 193–202 (1957).

    Google Scholar 

  • —: In: Electron microscopy in anatomy, pp. 267–277. London: Edward Arnold Ltd. 1961.

    Google Scholar 

  • Murray, M.: In: The structure and function of muscle, vol. I, pp. 111–136. Edit. by G. H. Bourne. New York: Academic Press 1960.

    Google Scholar 

  • Naville, A.: Histogenèse et régénération du muscle chez les Anoures. Arch. Biol. (Liège) 32, 37–171 (1922).

    Google Scholar 

  • Ogawa, Y.: Sythesis of skeletal muscle proteins in early embryos and regenerating tissue of chick and Triturus. Exp. Cell Res. 26, 269–274 (1962).

    Google Scholar 

  • Palade, G. E.: A small particulate component of the cytoplasm. J. biophys. biochem. Cytol. 1, 59–68 (1955).

    Google Scholar 

  • —: The endoplasmic reticulum. J. biophys. biochem. Cytol. 2, No 4, Suppl., 85–98 (1956).

    Google Scholar 

  • —, and P. Siekevitz: Pancreatic microsomes. An integrated morphological and biochemical study. J. biophys. biochem. Cytol. 2, 171–200 (1956).

    Google Scholar 

  • Palay, S. L., and L. J. Karlin: An electron microscopic study of the intestinal villus. I. The fasting animal. J. biophys. biochem. Cytol. 5, 363–372 (1959).

    Google Scholar 

  • Porter, K. R.: The myotendon junction in larval forms of Amblystoma punctatum. Anat. Rec. 118, 342 (1954).

    Google Scholar 

  • —: The sarcoplasmic reticulum in muscle cells of Amblystoma larvae. J. biophys. biochem. Cytol. 2, No 4, Suppl., 163–170 (1956).

    Google Scholar 

  • Porter, K. R.: In: Cytodifferentiation, pp. 54–55. Edit. by D. Rudnick. Chicago: University Chicago Press 1958.

    Google Scholar 

  • —: In: Fourth Int. Conf. on Electron Microscopy, vol. II, pp. 186–199. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • —, and G. E. Palade: Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol. 3, 269–300 (1957).

    Google Scholar 

  • Remak, R.: Über die Entwicklung der Muskelprimitivbündel. Frorieps Neue Notizen 35, 305–308 (1845).

    Google Scholar 

  • Ruska, H., and G. A. Edwards: A new cytoplasmic pattern in striated muscle fibres and its possible relation to growth. Growth 21, 73–88 (1957).

    Google Scholar 

  • Schmidt, V.: Die Histogenese der quergestreiften Muskelfaser und des Muskelsehnenüberganges. Z. mikr.-anat. Forsch. 8, 97–184 (1927).

    Google Scholar 

  • Schwann, T.: Microscopical researches into the accordance in the structure and growth of animals and plants. Translated from the German by H. Smith. London: C. and J. Adlard printers 1847.

    Google Scholar 

  • Siekevitz, P., and G. E. Palade: A cytochemical study on the pancreas of the guinea pig. V. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J. biophys. biochem. Cytol. 7, 619–630 (1960).

    Google Scholar 

  • Slautterback, D. B., and D. W. Fawcett: The development of the cnidoblasts of Hydra. An electron microscopic study of cell differentiation. J. biophys. biochem. Cytol. 5, 441–452 (1959).

    Google Scholar 

  • Speidel, C. C.: Studies of living muscles. I. Growth, injury and repair of striated muscle, as revealed by prolonged observations of individual fibers in living frog tadpoles. Amer. J. Anat. 62, 179–235 (1938).

    Google Scholar 

  • Stockdale, F. E., and H. Holtzer: DNA synthesis and myogenesis. Exp. Cell Res. 24, 508–520 (1961).

    Google Scholar 

  • Wainrach, S., and J. R. Sotelo: Electron microscope study of the developing chick embryo heart. Z. Zellforsch. 55, 622–634 (1961).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J. biophys. biochem. Cytol. 4, 727–730 (1958).

    Google Scholar 

  • Weed, I. G.: Cytological studies of developing muscle with special reference to myofibrils, mitochondria, Golgi material and nuclei. Z. Zellforsch. 25, 516–540 (1936).

    Google Scholar 

  • Weissenfels, N.: Der Einfluß der Gewebezüchtung auf die Morphologie der Hühnerherzmyoblasten, IV. Protoplasma (Wien) 55, 99–113 (1962).

    Google Scholar 

  • Winnick, T., and R. Goldwasser: Immunological investigation on the origin of myosin of skeletal muscle. Exp. Cell Res. 25, 428–436 (1961).

    Google Scholar 

  • Wolbach, S. B.: Centrioles and the histogenesis of the myofibril in tumors of striated muscle origin. Anat. Rec. 37, 255–273 (1927).

    Google Scholar 

  • Woods, P.S.: In: Structure and function of genetic elements, pp.153–174. Upton, New York: Brookhaven National Laboratory 1959.

    Google Scholar 

  • Zamecnik, P. C.: In: The Harvey lectures, Ser. 54, pp.256–281. New York: Academic Press 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grant C-5196 from the United States Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, E.D. The fine structure of differentiating muscle in the salamander tail. Z. Zellforsch. 59, 6–34 (1963). https://doi.org/10.1007/BF00321005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321005

Keywords

Navigation