Skip to main content
Log in

Differential spiralization along mammalian mitotic chromosomes

I. BUdR-revealed differentiation in Chinese hamster chromosomes

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Morphology of chromosomes replicating in the presence of 5-bromodeoxyuridine was studied using long-term cultures of Chinese hamster cells (line Blld-ii-FAF28). The cytological effect of the analog administered in various concentrations, at different stages of the S period, and during one and two successive mitotic cycles was studied. — The main cytological manifestation of the BUdR action consisted in spiralization delay of certain chromosome regions. The degree of the delay was dependent on the time interval between the introduction of the agent and mitosis, as well as on the agent's concentration. With prolongation of the interval, the spiralization delay diminished and disappeared being therefore always observable only in late replicating chromosome regions. Increased concentration of BUdR (in the range of 25 to 400 μg/ml) produced enhancement of the delay of chromosome spiralization. — After two successive reproduction cycles in the presence of BUdR, a great number of metaphases contained chromosomes the sister chromatids of which showed unequal spiralization delay. Autoradiography of 3H-BUdR distribution showed that the sister chromatid with a more pronounced underspiralization corresponds to the chromatid incorporating BUdR into both strands of the DNA molecule. — Mechanisms of the effect observed, as well as chemical influence on chromosome spiralization as a usefull tool of displaying linear chromosome differentiation, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrighi, F. E., Hsu, T. C.: Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81–86 (1971).

    Google Scholar 

  • Bell, S., Wolff, Sh.: Studies on the mechanism of the effect of fluorodeoxyuridine on chromosomes. Proc. nat. Acad. Sci. (Wash.) 51, 195–202 (1964).

    Google Scholar 

  • Caspersson, T.: Analysis of chemical differentiation along metaphase chromosomes. Exp. Cell Res. 58, 451 (1969).

    Google Scholar 

  • Caspersson, T., Lomakka, G., Zech, L.: The 24 fluorescence patterns of the human metaphase chromosomes-distinquishing characters and variability. Hereditas (Lund) 67, 89–102 (1971).

    Google Scholar 

  • Caspersson, T., Zech, L., Johansson, C.: Differential binding of alkylating fluorochromes in human chromosomes. Exp. Cell Res. 60, 315–319 (1970).

    Google Scholar 

  • Cohen, M. M., Shaw, M. W.: Effects of mitomycin C on human chromosomes. J. Cell Biol. 23, 386–395 (1964).

    Google Scholar 

  • Dutrillaux, B., Lejeune, J.: Sur une nouvelle technique d'analyse du caryotype humain. C. R. Acad. Sci. (Paris) 272, Ser. D, 2638–2640 (1971).

    Google Scholar 

  • Egolina, N. A., Zakharov, A. F.: The dependence of chromosomal spiralization in the mitotic cycle of Chinese hamster cells on dose and time of treatment with 5-bromodeoxyuridine. [Russian.] Tsitologiya (USSR) 13, 1218–1224 (1971).

    Google Scholar 

  • Egolina, N. A., Zakharov, A. F.: Spiralization of Chinese hamster chromosomes after 5-bromodeoxyuridine treatment of cells in two consecutive mitotic cycles. [Russian.] Tsitologiya (USSR) 14, 165–171 (1972).

    Google Scholar 

  • Engel, W., Krone, W., Wole, U.: Die Wirkung von Thioguanin, Hydroxylamin und 5-Bromodeoxyuridin auf menschliche Chromosomen in vitro. Mutation Res. 4, 353–368 (1967).

    Google Scholar 

  • Fucik, V., Michaelis, A., Rieger, R.: On the induction of segment extension and chromatid structural changes in Vicia faba chromosomes after treatment with 5-azacytidine and 5-azadeoxycytidine. Mutation Res. 9, 599–606 (1970).

    Google Scholar 

  • Gall, J. G., Pardue, M. L.: Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proe. nat. Acad. Sci. (Wash.) 63, 378–383 (1969).

    Google Scholar 

  • German, J.: Chromosomal breakage syndromes. In: Birth Defects: Original Article Ser. 5, 117–131 (1969).

    Google Scholar 

  • Ho, T., Cho, S. S., Nell, M., Yerganian, G.: Response of secondary constrictions of X-chromosomes to BUdR. Genetics 48, 893 (1963).

    Google Scholar 

  • Hsu, T. C., Somers, C. E.: Effect of 5-bromodeoxyuridine on mammalian chromosomes. Proc. nat. Acad. Sci. (Wash.) 47, 396–403 (1961).

    Google Scholar 

  • Huang, C. C.: Induction of a high incidence of damage to the X chromosomes of Rattus (Mastomys) natalensis by base analoques, viruses and carcinogens. Chromosoma (Berl.) 23, 162–179 (1967).

    Google Scholar 

  • Huang, C. C., Imamura, T., Moore, G. E.: Chromosomes and cloning efficiences of hematopoietic cell lines derived from patients with leukemia, melanoma, myeloma, and Burkitt lymphoma. J. nat. Cancer Inst. 43, 1129–1146 (1969).

    Google Scholar 

  • John, H. A., Birnstiel, M. L., Jones, K. W.: RNA-DNA hybrids at the cytological level. Nature (Lond.) 223, 582–587 (1969).

    Google Scholar 

  • Jones, K. W., Corneo, G.: Location of satellite and homogenous DNA sequences on human chromosomes. Nature (Lond.) New Biol. 233, 268–271 (1971).

    Google Scholar 

  • Kaback, M. M., Saksela, E., Mellman, W. J.: The effect of 5-bromodeoxyuridine on human chromosomes. Exp. Cell Res. 34, 182–212 (1964).

    Google Scholar 

  • Kato, R.: Chromosome breakage induced by a carcinogenic hydrocarbon in Chinese hamster cells and human leukocytes in vitro. Hereditas (Lund) 59, 120–141 (1968).

    Google Scholar 

  • Kihlman, B. A., Nichols, W. W., Levan, A.: The effect of deoxyadenosine and cytosine arabinoside on the chromosomes of human leucocytes in vitro. Hereditas (Lund) 50, 139–143 (1963).

    Google Scholar 

  • Kurita, Y., Yosida, T. H., Moriwaki, K.: Nonrandomness in the distribution of chromosome aberrations induced by a radiomimetic chemical 4-nitroquinoline 1-oxide, on tumor cells. Jap. J. Genet. 40, 365–376 (1965).

    Google Scholar 

  • Miles, C. P., O'Neill, F.: Prominent secondary constrictions in a pseudodiploid human cell line. Cytogenetics 5, 321–334 (1966).

    Google Scholar 

  • Miles, C. P., O'Neill, F.: 3H labeling patterns of permanent cell line chromosomes showing pulverizazion or accentuated secondary constrictions. J. Cell Biol. 40, 553–561 (1969).

    Google Scholar 

  • Miles, C. P., O'Neill, F., Armstrong, D., Clarkson, B., Keane, J.: Chromosome pattern of human leukocyte established cell lines. Cancer Res. 28, 481–490 (1968).

    Google Scholar 

  • Monod, J., Jacob, F.: General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spr. Harb. Symp. quant. Biol. 26, 389–401 (1961).

    Google Scholar 

  • Moorhead, P. S., Saksela, E.: Non-random chromosomal aberrations in SV40-transformed human cells. J. cell. comp. Physiol. 62, 57–84 (1963).

    Google Scholar 

  • Nichols, W. W.: Virus induced chromosome abnormalities. Ann. Rev. Microbiol. 24, 479–500 (1970).

    Google Scholar 

  • Nichols, W. W., Levan, A., Aula, P., Norrby, E.: Chromosome damage associated with the measles virus in vitro. Hereditas (Lund) 54, 101–118 (1965).

    Google Scholar 

  • O'Neill, F. J., Miles, C. P.: Chromosome changes in human cells induced by herpes simplex, types 1 and 2. Nature (Lond.) 223, 851–852 (1969).

    Google Scholar 

  • Palmer, C. G.: BUdR-induced constrictions in human chromosomes. In: Proc. XIIth Intern. Congr. Genet. 1, 214 (1968).

    Google Scholar 

  • Palmer, C. G.: 5-bromodeoxyuridine-induced constrictions in human chromosomes. Canad. J. Genet. Cytol. 12, 816–830 (1970).

    Google Scholar 

  • Palmer, C. G., Funderburk, S.: Secondary constrictions in human chromosomes. Cytogenetics 4, 261–276 (1965).

    Google Scholar 

  • Pardue, M. L., Gall, J. G.: Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. nat. Acad. Sci. (Wash.) 64, 600–604 (1969).

    Google Scholar 

  • Pardue, M. L., Gall, J. G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970).

    Google Scholar 

  • Patau, K.: Banded chromosomes in man. In: 4th Intern Congr. Human Genet., Paris, 1.–11. September 1971. Excerpta med., Inter. Congr. Ser. 233, 140 (1971).

  • Prusoff, W. H.: Substitution of DNA with base analogs. In: Symposium on the interaction of drugs and subcellular components in animal cells (P. N. Campbell, ed.), 45–63. London: Churchill 1968.

    Google Scholar 

  • Sandberg, A. A., Aya, T., Ikeuchi, T., Weinfeld, H.: Definition and morphologic features of chromosome pulverization: a hypothesis to explain the phenomenon. J. nat. Cancer Inst. 45, 615–623 (1970).

    Google Scholar 

  • Schmid, W.: Heterochromatin in mammals. Arch. Klaus-Stift. Vererb.-Forsch. 42, 1–60 (1967).

    Google Scholar 

  • Stubblefield, E.: DNA synthesis and chromosomal morphology of Chinese hamster cells cultured in media containing N-deacetyl-N-methylcolchicine (colcemid). In: Symp. Intern. Soc. Cell Biol. vol. 3, Cytogenetics of cells in culture (R. J. C. Harris, ed.), p. 223–248. New York: Academic Press Inc. 1964.

    Google Scholar 

  • Stubblefield, E., Klevecz, R.: Synchronization of Chinese hamster cells by reversal of colcemid inhibition. Exp. Cell Res. 40, 660–664 (1965).

    Google Scholar 

  • Sumner, A. T., Evans, H. J., Buckland, R. A.: New technique for distinguishing between human chromosomes. Nature (Lond.) New Biol. 232, 31–32 (1971).

    Google Scholar 

  • Szybalski, W.: Properties and applications of halogenated deoxyribonucleic acids. In: Molecular basis of neoplasia, p. 147–171. Austin: University of Texas Press 1962.

    Google Scholar 

  • Wolman, S. R., Hirschhorn, K., Todaro, G. J.: Early chromosomal changes in SV48-infected human fibroblast cultures. Cytogenetics 3, 45–61 (1964).

    Google Scholar 

  • Yunis, J. J., Roldan, L., Yasmineh, W. G., Lee, J. C.: Staining of satellite DNA of metaphase chromosomes. Nature (Lond.) 231, 532–533 (1971).

    Google Scholar 

  • Zakharov, A. F., Egolina, N. A.: Asynchrony of DNA replication and mitotic spiralization along heterochromatic portions of Chinese hamster chromosomes. Chromosoma (Berl.) 23, 365–385 (1968).

    Google Scholar 

  • Zakharov, A. F., Egolina, N. A.: Functional morphology of mammalian chromosomes in cultured cells. I. Origin of the additional late replicating chromosomal regions in hypodiploid cells of the Chinese hamster. [Russian.] Genetika (Moscow) 5, 90–103 (1969).

    Google Scholar 

  • Zakharov, A. F., Egolina, K. A.: Functional morphology of mammalian chromosomes in cultured cells. II. Chromosomes of the Chinese hamster aneuploid cells as studied with 5-bromodeoxyuridine. [Russian.] Tsitologiya (USSR) 12, 166–171 (1970).

    Google Scholar 

  • Zakharov, A. F., Egolina, N. A., Kakpakova, E. S.: Late-replicating chromosomal segments in aneuploid Chinese hamster cell lines as determined by autoradiography. J. nat. Cancer Inst. 36, 215–232 (1966).

    Google Scholar 

  • Zakharov, A. F., Kakpakova, E. S., Egolina, N. A., Pogosianz, H. E.: Chromosomal variability in clonal populations of the Chinese hamster cell strain. J. nat. Cancer Inst. 33, 935–956 (1964).

    Google Scholar 

  • Zur Hausen, H.: Chromosomal changes of similar nature in seven established cell lines derived from the peripheral blood of patients with leukemia. J. nat. Cancer Inst. 38, 683–696 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, A.F., Egolina, N.A. Differential spiralization along mammalian mitotic chromosomes. Chromosoma 38, 341–365 (1972). https://doi.org/10.1007/BF00320156

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320156

Keywords

Navigation