Skip to main content
Log in

Quadruple colocalization of calretinin, calcitonin gene-related peptide, vasoactive intestinal peptide, and substance P in fibers within the villi of the rat intestine

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Double-labeling immunofluoresenct histochemistry demonstrates that calretinin, a calcium-binding protein, coexists with calcitonin gene-related peptide, vasoactive intestinal peptide, and substance P in the fibers innervating the lamina propria of the rat intestinal villi. An acetylcholinesterase histochemical stain revealed that the majority of calretinin-containing cells in the myenteric ganglia were cholinergic and that about one half of the submucosal calretinin-containing cells colocalized with acetylcholinesterase. In situ hybridization studies confirmed the presence of calretinin mRNA in the dorsal root ganglia, and a ribonuclease protection assay verified the presence of calretinin message in the intestine. The coexistence of calretinin in calcitonin-gene-related-peptide-containing cells that also contained substance P and vasoactive intestinal polypeptide in the dorsal root ganglia suggest that these ganglia are the source of the quadruple colocalization within the sensory fibers of the villi. Although the function of calretinin in these nerves is unknown, it is hypothesized that the coexistence of three potent vasodilatory peptides influences the uptake of metabolized food products within the vasculature of the villi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 310:21–44

    Google Scholar 

  • Arai M, Arai R, Kani K, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the rat lateral geniculate nucleus and its retino-geniculate projection. Brain Res 596: 215–222

    Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Google Scholar 

  • Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56

    Google Scholar 

  • Brookes SJH, Steele PA, Costa M (1991) Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res 263:471–481

    Google Scholar 

  • Brookes SJH, Song ZM, Steele PA, Costa M (1992) Identification of motor neurons to the longitudinal muscle of the guinea pig ileum. Gastroenterology 103:961–973

    Google Scholar 

  • Buchan AMJ (1991) Neurofilament M and calbindin D28k are present in mutually exclusive subpopulations of enteric neurons in the rat submucous plexus. Brain Res 538:171–175

    Google Scholar 

  • Buchan AMJ, Baimbridge KG (1988) Distribution and co-localization of calbindin D28k with VIP and neuropeptide Y but not somatostatin, galanin and substance P in the enteric nervous system of the rat. Peptides 9:333–338

    Google Scholar 

  • Celio MR, Poncino A, Cantino D (1992) Presence of calretinin in neurons of the human intestine. Boll Soc Ital Biol Sper 68:25–29

    Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Cuello AC (1981) Projections of substance P-containing neurons within the guineapig small intestine. Neuroscience 6:411–424

    Google Scholar 

  • Dhatt N, Buchan A (1994) Colocalization of neuropeptides with calbindin D28k and NADPH diaphorase in the enteric nerve plexuses of normal human ileum. Gastroenterology 107: 680–690

    Google Scholar 

  • Domoto T, Yang H, Bishop AE, Polak JM, Oki M (1992) Distribution and origin of extrinsic nerve fibers containing calcitonin gene-related peptide, substance P and galanin in the rat upper rectum. Neuroscience Res 15:64–73

    Google Scholar 

  • Duc C, Barak-Waller I, Droz B (1994) Innervation of putative rapidly adapting mechanoreceptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat. Eur J Neurosci 6:264–271

    Google Scholar 

  • Furness JB, Keast JR, Pompolo S, Bornstein JC, Costa M, Emson PC, Lawson DEM (1988) Immunohistochemical evidence for the presence of calcium-binding proteins in enteric neurons. Cell Tissue Res 252:79–87

    Google Scholar 

  • Gibbins IL (1992) Vasoconstrictor, vasodilator and pilomotor pathways in sympathetic ganglia of guinea-pigs. Neuroscience 47:657–672

    Google Scholar 

  • Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57:125–130

    Google Scholar 

  • Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JFB, Kelly JS, Evans RM, Rosenfeld MG (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci 4:3101–3111

    Google Scholar 

  • Hara H, Hamill GS, Jacobowitz DM (1985) Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with vasoactive intestinal polypeptide. Brain Res Bull 14:179–188

    Google Scholar 

  • Heppelman B, Emson PC (1993) Distribution of calretinin mRNA in rat spinal cord and dorsal root ganglia: a study using nonradioactive in situ hybridization histochemistry. Brain Res 624:312–316

    Google Scholar 

  • Holman JJ, Craig RK, Marshall I (1986) Human α- and β-CGRP and rat α-CGRP are coronary vasodilators in the rat. Peptides 7:231–235

    Google Scholar 

  • Huidobro-Toro JP, Chela CA, Bahouth S, Nodar R, Musacchio JM (1982) Fading and tachyphylaxis to the contractile effects of substance P in the guinea-pig ileum. Eur J Pharmacolacol 81:21–34

    Google Scholar 

  • Iacopino AM, Christakos S (1990). Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082

    Google Scholar 

  • Ichikawa H, Jacobowitz DM, Winsky L, Helke CJ (1991) Calretinin-immunoreactivity in vagal and glossopharyngeal sensory neurons of the rat: distribution and coexistence with putative transmitter agents. Brain Res 557:316–321

    Google Scholar 

  • Ichikawa H, Jacobowitz DM, Sugimoto T (1992) Calretinin-immunoreactivity in the oro-facial and pharyngeal regions of the rat. Neurosci Lett 146:155–158

    Google Scholar 

  • Ichikawa H, Jacobowitz DM, Sugimoto T (1993) Calretinin-immunoreactive neurons in the trigeminal and dorsal root ganglia of the rat. Brain Res 617:96–102

    Google Scholar 

  • Jacobowitz DM, Creed GJ (1983) Cholinergic projection sites of the nucleus of tractus diagonalis. Brain Res Bull 10:365–371

    Google Scholar 

  • Jacobowitz DM, Koelle GB (1965) Histochemical correlations of acetylcholinesterase and catecholamines in postganglionic autonomic nerves of the cat, rabbit, and guinea pig. J Pharmacol Exp Ther 148:225–237

    Google Scholar 

  • Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304:198–218

    Google Scholar 

  • Ju G, Hökfelt T, Brodin E, Fahrenkrug J, Fischer JA, Frey P, Elde RP, Brown JC (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res 247:417–431

    Google Scholar 

  • Kashiba H, Senba E, Kawai Y, Ueda Y, Tohyama M (1992) Axonal blockade induces the expression of vasoactive intestinal polypeptides and galanin in rat dorsal root ganglion neurons. Brain Res 577:19–28

    Google Scholar 

  • Kerins C, Said SI (1973) Hyperglycemic and glycogenolytic effects of vasoactive intestinal polypeptide. Proc Soc Exp Biol Med 142:1014–1017

    Google Scholar 

  • Koelle GB (1955) The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J Pharmacol Exp Ther 114:167–184

    Google Scholar 

  • Kuźnicki J, Winsky L, Jacobowitz DM (1994) Ca2+-dependent and independent interactions of calretinin with hydrophobic resins. Biochem Mol Biol Int 33:713–721

    Google Scholar 

  • Kuźnjcki J, Wang TCL, Martin BM, Winsky L, Jacobowitz DM (1995) Localization of Ca2+-dependent conformational changes of calretinin by limited tryptic proteolysis. Biochem J (in press)

  • Landis SC, Fredieu JR (1986) Coexistence of calcitonin gene-related peptide and vasoactive intestinal peptide in cholinergic sympathetic innervation of rat sweat glands. Brain Res 377: 177–181

    Google Scholar 

  • Larsson LT, Malmfors G, Sundler F (1988) Neuropeptide Y, calcitonin gene-related peptide, and galanin in Hirschsprung's disease: an immunocytochemical study. J Pediatr Surg 23:342–345

    Google Scholar 

  • Leeman SE, Mroz EA (1974) Substance P. Life Sci 15:2033–2044

    Google Scholar 

  • Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9:943–954

    Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic meditor of antidromic vasodilation and neurogenic plasma estravasation. Naunyn-Schmiedeberg's Arch Pharmacol 310:175–183

    Google Scholar 

  • Lenz HJ, Mortrud MT, Vale WW, Rivier JE, Brown MR (1984) Calcitonin gene-related peptide acts within the central nervous system to inhibit gastic acid secretion. Regul Pept 9:271–277

    Google Scholar 

  • Lindh B, Lundberg JM, Hökfelt T, Elfvin LG, Fahrenkrug J, Fischer J (1987) Coexistence of CGRP- and VIP-like immunoreactivities in a population of neurons in the cat stellate ganglia. Acta Physiol Scand 131:475–476

    Google Scholar 

  • Marshall I, Al-Kazwini SJ, Roberts PM, Shepperson NB, Adams M, Craig RK (1986) Cardiovascular effects of human and rat CGRP compared in the rat and other species. Eur J Pharmacol 123:207–216

    Google Scholar 

  • Messenger JP (1993) Immunohistochemical analysis of neurons and their projections in the proximal colon of the guinea pig. Arch Histol Cytol 56:459–473

    Google Scholar 

  • Parmentier M (1990) Calbindin D28k is essentially located in the colonic part of the toad intestine. Biol Cell 68:43–49

    Google Scholar 

  • Parmentier M, Lefort A (1991) Structure of the human brain calcium-binding protein calretinin and its expression in bacteria. Eur J Biochem 196:79–85

    Google Scholar 

  • Pompolo S, Furness JB (1993) Origins of synaptic inputs to calretinin immunoreactive neurons in the guinea-pig small intestine. J Neurocytol 22:531–546

    Google Scholar 

  • Ren K, Ruda MA, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Res Bull 31:13–22

    Google Scholar 

  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immuno-histochemical study. Neuroscience 46:101–134

    Google Scholar 

  • Résibois A, Vienne G, Pochet R (1988) Calbindin-D28k and the peptidergic neuroendocrine system in rat gut: an immunohis-tochemical study. Biol Cell 63:67–75

    Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105: 1343–1353

    Google Scholar 

  • Rogers JH, Résibois A (1992) Calretinin and calbindin D28k in rat brain: patterns of partial colocalization. Neuroscience 51: 843–865

    Google Scholar 

  • Schoor BA, Said SI, Makhlouf GM (1974) Inhibition of gastric secretion by synthetic vasoactive intestinal peptide (VIP). J Clin Res 22:23A

    Google Scholar 

  • Schultzberg M, Dreyfus CF, Gershon MD, Hökfelt T, Elde R, Nilsson G, Said SI, Goldstein M (1980) VIP, enkephalin-, substance P-, and somatostatin-like immunoreactivity in neurons intrinsic to the intestine: immunohistochemical evidence from organotypic tissue cultures. Brain Res 155:239–248

    Google Scholar 

  • Schebalin M, Said SI, Makhlouf GM (1977) Stimulation of insulin and glucagon secretion by vasoactive intestinal peptide. Am J Physiol 232:E197-E200

    Google Scholar 

  • Song Z-M, Brookes SJH, Steele PA, Costa M (1992) Projections and pathways of submucous neurons to the mucosa of the guinea pig small intestine. Cell Tissue Res 269:87–98

    Google Scholar 

  • Steele PA, Brookes SJH, Costa M (1991) Immunohistochemical identification of cholinergic neurons in the myenteric plexus of guinea pig small intestine. Neuroscience 45:227–239

    Google Scholar 

  • Sternini C, Anderson K (1992) Calcitonin gene-related peptide-containing neurons supplying the rat digestive system: differential distribution and expression pattern. Somatosens Motor Res 9:45–59

    Google Scholar 

  • Strauss KI, Jacobowitz DM (1993a) Nucleotide sequence of rat calretinin cDNA. Neurochem Int 22:541–546

    Google Scholar 

  • Strauss KI, Jacobowitz DM (1993b) Quantitative measurement of calretinin and β-actin mRNA in rat brain micropunches without prior isolation of RNA. Mol Brain Res 20:229–239

    Google Scholar 

  • Strauss KI, Kuznicki J, Winsky L, Jacobowitz DM (1994) Recombinant and native calretinin share physiochemical properties. Protein Expr Purif 5:187–191

    Google Scholar 

  • Su HC, Bishop AE, Power RF, Hamada Y, Polak JM (1987) Dual intrinsic and extrinsic origins of CGRP- and NPY-immunoreactive nerves of rat gut and pancreas. J Neurosci 7:2674–2687

    Google Scholar 

  • Sutin E, Jacobowitz DM (1990) Detection of CCK mRNA in the motor nucleus of the rat trigeminal nerve in situ hybridization histochemistry. Mol Brain Res 8:63–68

    Google Scholar 

  • Taché Y, Pappas T, Lauffenburger M, Goto Y, Walsh JH, Debas H (1984) Calcitonin gene-related peptide: potent peripheral inhibitor of gastric acid secretion in rats and dogs. Gastroenterology 87:344–349

    Google Scholar 

  • Tsuto T, Okamura H, Fukui K, Obata-Tsuto HL, Terubayashi H, Yanagihara J, Iwai N, Majima S, Yanaihara N, Ibata Y (1985) Immunohistochemical investigations of gut hormones in the colon of patients with Hirschsprung's disease. J Pediatr Surg 20:266–270

    Google Scholar 

  • Walters JRF, Bishop AE, Facer P, Lawson EM, Rogers JH, Polak JM (1993) Calretinin and calbindinD28k immunoreactivity in the human gastrointestinal tract. Gastroenterology 104:1381–1389

    Google Scholar 

  • Weisenfeld-Hallin Z, Hökfelt T, Lundberg JM, Forssmann WG, Reinecke M, Tschopp FA, Fischer JA (1984) Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett 52:199–204

    Google Scholar 

  • Winsky L, Jacobowitz DM (1991) Radioimmunoassay of calretinin in the rat brain. Neurochem Int 19:517–522

    Google Scholar 

  • Winsky L, Nakata H, Martin B, Jacobowitz DM (1989) Isolation, partial amino acid sequence and immunohistochemical localization of a brain-specific calcium-binding protein. Proc Natl Acad Sci USA 86:10139–10143

    Google Scholar 

  • Young III WS, Bonner TL, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci USA 83:9827–9831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacs, K.R., Winsky, L., Strauss, K.I. et al. Quadruple colocalization of calretinin, calcitonin gene-related peptide, vasoactive intestinal peptide, and substance P in fibers within the villi of the rat intestine. Cell Tissue Res 280, 639–651 (1995). https://doi.org/10.1007/BF00318366

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318366

Key words

Navigation