Skip to main content
Log in

Structure and evolution of myxomycete nuclear group I introns: a model for horizontal transfer by intron homing

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have examined five nuclear group I introns, located at three different positions in the large subunit ribosomal RNA (LSU rRNA) gene of the two myxomycete species, Didymium iridis and Physarum polycephalum. Structural models of intron RNAs, including secondary and tertiary interactions, are proposed. This analysis revealed that the Physarum intron 2 contains an unusual core region that lacks the P8 segment, as well as several of the base-triples known to be conserved among group I introns. Structural and evolutionary comparisons suggest that the corresponding introns 1 and 2 were present in a common ancestor of Didymium and Physarum, and that the five introns in LSU rRNA genes of these myxomycetes were acquired in three different events. Evolutionary relationships, inferred from the sequence analysis of several different nuclear group I introns and the ribosomal RNA genes of the intron-harbouring organisms, strongly support horizontal transfer of introns in the course of evolution. We propose a model that may explain how myxomycetes in natural environments obtained their nuclear group I introns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belfort M (1991) Cell 64:9–11

    Google Scholar 

  • Burke JM (1988) Gene 73:273–294

    Google Scholar 

  • Burke JM, Esherick JS, Burfeind WR, King JL (1990) Nature 344:80–82

    Google Scholar 

  • Cech TR (1988) Gene 73:259–271

    Google Scholar 

  • Cech TR (1990) Annu Rev Biochem 59:543–568

    Google Scholar 

  • Collins RA (1988) Nucleic Acids Res 16:2705–2715

    Google Scholar 

  • Couture S, Ellington AD, Gerber AS, Cherry JM, Doudna JA, Green R, Hanna M, Pace U, Rajagopal J, Szostak JW (1990) J Mol Biol 215:345–358

    Google Scholar 

  • Dávila-Aponte JA, Huss VAR, Sogin ML, Cech TR (1991) Nucleic Acids Res 19:4429–4436

    Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Nature 350:148–151

    Google Scholar 

  • Dujon B (1989) Gene 82:91–114

    Google Scholar 

  • Edman JC, Kovacs JA, Masur H, Snati DV, Elwood HJ, Sogin ML (1988) Nature 334:519–522

    Google Scholar 

  • Engberg J, Nielsen H, Lenaers G, Murayama O, Fujitani H, Higashinakagawa T (1990) J Mol Evol 30:514–521

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Science 155:279–284

    Google Scholar 

  • Guo Q, Akins RA, Garriga G, Lambowitz AM (1991) J Biol Chem 266:1809–1819

    Google Scholar 

  • Heinemann JA, Sprague GFJ (1989) Nature 340:205–209

    Google Scholar 

  • Hicke BJ, Christian EL, Yarus M (1989) EMBO J 8:3843–3851

    Google Scholar 

  • Huss VAR, Sogin ML (1990) J Mol Evol 31:432–442

    Google Scholar 

  • Johansen S (1991) DNA Sequence-J DNA Seq Map 2:193–196

    Google Scholar 

  • Johansen S, Johansen T, Haugli F (1992) Curr Genet 22:305–312

    Google Scholar 

  • Lambowitz AM (1989) Cell 56:323–326

    Google Scholar 

  • Lambowitz AM, Perlman PS (1990) Trends Biochem 15:440–444

    Google Scholar 

  • Lenaers G, Maroteaux L, Michot B, Herzog M (1989) J Mol Evol 29:40–51

    Google Scholar 

  • Michel F, Dujon B (1983) EMBO J 2:33–38

    Google Scholar 

  • Michel F, Westhof E (1990) J Mol Biol 216:585–610

    Google Scholar 

  • Michel F, Ellington AD, Couture S, Szostak JW (1990) Nature 347:578–580

    Google Scholar 

  • Mohr G, Lambowitz AM (1991) Nature 354:164–167

    Google Scholar 

  • Muscarella DE, Vogt VM (1989) Cell 56:443–454

    Google Scholar 

  • Muscarella DE, Ellison EL, Ruoff BM, Vogt VM (1990) Mol Cell Biol 10:3386–3396

    Google Scholar 

  • Nielsen H, Engberg J (1985) Nucleic Acids Res 13:7445–7455

    Google Scholar 

  • Nishikawa M, Suzuki K, Yoshida K (1992) Curr Genet 21:101–108

    Google Scholar 

  • Noller HE, Kop J, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Woese CR (1981) Nucleic Acids Res 9:6167–6189

    Google Scholar 

  • Nomiyama H, Kuhara S, Sukita T, Otsuka T, Sakaki Y (1983a) Nucleic Acids Res 9:5507–5520

    Google Scholar 

  • Nomiyama H, Sakaki Y, Takagi Y (1981b) Proc Natl Acad Sci USA 78:1376–1380

    Google Scholar 

  • Ragnini A, Grisanti P, Rinaldi T, Frontali L, Palleschi C (1991) Curr Genet 19:169–174

    Google Scholar 

  • Skelly PJ, Maleszka R (1991) Curr Genet 19:89–94

    Google Scholar 

  • Sogin ML, Edman JC (1989) Nucleic Acids Res 17:5349–5359

    Google Scholar 

  • Vogt VM, Braun R (1976) J Mol Biol 106:567–587

    Google Scholar 

  • Wilson C, Fukuhara H (1991) Curr Genet 19:163–167

    Google Scholar 

  • Woodson SA, Cech TR (1989) Cell 57:335–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansen, S., Johansen, T. & Haugli, F. Structure and evolution of myxomycete nuclear group I introns: a model for horizontal transfer by intron homing. Curr Genet 22, 297–304 (1992). https://doi.org/10.1007/BF00317925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317925

Key words

Navigation