Skip to main content
Log in

Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae)

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Spreading of emergence over several years due to prolonged diapause in some larvae was shown in the chestnut weevil. Depending on the year the larvae buried themselves in the ground, 32–56% of live adults emerged after 2 or 3 years of underground life. Variability in the duration of diapause was assumed to correspond to tactics of adaptative “coin-flipping” plasticity. This plasticity must allow the chestnut weevil to respond to the unpredictability of its habitat as measured by the irregularity of chestnut production and summer drought. Indeed, fecundity and adult longevity did not lessen after 2 years of underground life. No drastic decrease in the population size of weevils occurs after bad years; for instance when the number of chestnuts on the study tree is less than 10 000, passers-by can collect all the fruit and about 95% of larvae developing in chestnuts are destroyed. Diapause nature (simple or prolonged) may be related to moisture and gas rates in the ground from October to December. These factors acting in autumn are not known to be involved in the physiological mechanisms that control the production of chestnuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alverson DR, Harris MK, Blanchard CE, Hanlin WG (1984) Mechanical impedance of adult pecan weevil (Coleoptera: Curculionidae) emergence related to soil moisture and penetration resistance. Environ Entomol 13:588–592

    Google Scholar 

  • Anderson JM (1978) Inter and intra-habitat relationships between woodland Cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32:341–348

    Google Scholar 

  • Annila E (1982) Diapause and population fluctuations in Megastigmus specularis Walley and Megastigmus spermotrophus Wachtl. (Hymenoptera, Torymidae). Ann Entomol Fenn 48:33–36

    Google Scholar 

  • Annila E (1984) Population fluctuation of some cone and seed insects in Norway spruce. In: Yates HO (ed). Proceedings of cone and seed insects. International Union of Forestry Research Organizations. Athens, USA pp 57–64

    Google Scholar 

  • Basedow T (1977) The effects of temperature and precipitations on diapause and phenology of the wheat blossom midges Contarinia tritici Kirby and Sitodiplosis mosellana Gehin (Dipt., Cecidomyidae). Zool Jahrb Abt Syst Oekol Geogr Tiere 104:302–326

    Google Scholar 

  • Bovey P, Linder A, Müller O (1975) Recherches sur les insectes des châtaignes au Tessin (Suisse). Schweiz Z Forst 126:781–820

    Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Google Scholar 

  • Bürges G, Gal T (1981) Zur Verbreitung und Lebensweise des Kastanienrüsslers (Curculio elephas Gyll., Col.: Curculionidae) in Ungarn. Teil 2. Z Angew Entomol 92:35–41

    Google Scholar 

  • Bull JJ (1987) Evolution and phenotypic variance. Evolution 41:303–315

    Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Google Scholar 

  • Colizza C (1929) Contributo alla conoscenza del balanino delle castagne (Balaninus elephas) Bull Lab Zool Gen Agric Portici 22:244–266

    Google Scholar 

  • Cooper WS, Kaplan RH (1982) Adaptative coin-flipping: a decision-theoretic examination of natural selection for random individual variation. J Theor Biol 94:135–151

    Google Scholar 

  • Coutin R (1960) Estimation de l'importance des populations d'imagos de Balaninus elephas Gyll. dans une châtaigneraie cévenole. Rev Zool Agric Appl 59:1–5

    Google Scholar 

  • Coutin R (1961) la diapause larvaire de Balaninus elephas Gyll. C R Acad Sci Paris 253:2123–2125

    Google Scholar 

  • Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada, National Museum of Natural Sciences, Ottawa

    Google Scholar 

  • Debouzie D, Menu F (1992) Prolonged diapause frequency in experimental chesnut weevil Curculio elephas populations. Acta Oecol 13:315–324

    Google Scholar 

  • Debouzie D, Pallen C (1987) Spatial distribution of chestnut weevil Balaninus elephas populations. In: Labeyrie V, Fabres G, Lachaise D (eds) Insects-Plants. Dr W Junk, Dordrecht, pp 77–83

    Google Scholar 

  • Debouzie D, Lebreton JD, Allainé D, Pallen C (1985) Contribution à la notion de groupes de populations, exemples de populations d'oiseaux et d'insectes. Rapport ATP Biologie des Populations, CNRS, Paris

    Google Scholar 

  • Den Boer PJ (1991) Seeing the trees for the wood: random walks or bounded fluctuations of population size? Oecologia 86:484–491

    Google Scholar 

  • Eichhorn O (1982) Untersuchungen zur Okologie der gemeinen Kiefern-Buschhornblattwespe, Diprion pini L. (Hym., Diprionidae) VII. Populations dynamische Faktoren. Z Angew Entomol 94:271–300

    Google Scholar 

  • Hanski I (1988) Four kinds of extra long diapause in insects: a review of theory and observations. Ann Zool Fenn 25:37–53

    Google Scholar 

  • Kaplan RH, Cooper WS (1984) The evolution of developmental plasticity in reproductive characteristics: an application of the adaptative coin-flipping principle. Am Nat 123:393–411

    Google Scholar 

  • Legay S (1982) Espace et temps quotidiens au village. Thèse de doctorat, EHESS Paris

  • Lyons LA (1970) Some population features of reproductive capacity in Neodiprion swainei (Hymenoptera, Diprionidae). Can Entomol 102:68–84

    Google Scholar 

  • Martin H (1949) Contribution à l'étude du balanin des noisettes (Balaninus nucum L.). Rev Pathol Vég Entomol Agric Fr. 28:3–28

    Google Scholar 

  • Menu F (1992) Diapause prolongée et variabilité des émergences chez les insectes. Exemple du balanin de la châtaigne Curculio elephas Gyll. (Coléoptère, Curculionidae). Thèse de doctorat, Université Claude Bernard Lyon I

  • Nakamura I, Ae SA (1977) Prolonged pupal diapause of Papilio alexanor: arid zone adaptation directed by larval host plant. Ann Entomol Soc Am 70:481–484

    Google Scholar 

  • Pallen C (1989) Approche structurale et fonctionnelle en biologie de populations d'insectes. Application à deux insectes de la châtaigne Laspeyresia splendana et Curculio elephas. Thèse de doctorat, Université Claude Bernard Lyon I

  • Philippi T, Seger J (1989) Hedging ones evolutionary bets, revisited. Trend Ecol Evol 4:41–44

    Google Scholar 

  • Powell JA (1974) Occurrence of prolonged diapause in Ethmiid moths (Lepidoptera, Gelechioidae). Pan-Pac Entomol 50:220–225

    Google Scholar 

  • Powell JA (1986) Records of prolonged diapause in Lepidoptera. J Res Lep 25:83–109

    Google Scholar 

  • Prebble ML (1941) The diapause and related phenomena in Gilpinia polytoma Hartig. IV. Influence of food and diapause upon reproductive capacity. Can J Res 19:417–436

    Google Scholar 

  • Roques A (1988) La spécificité des relations entre cones de conifères et insectes inféodés en Europe occidentale. Un exemple d'étude des interactions plantes-insectes. Thèse d'Etat, Pau

  • Roques A (1990) Comment s'ajustent les populations d'insectes phytophages confrontés à des fluctuations saisonnières acycliques d'abondance de leurs hôtes? L'exemple de la diapause prolongée chez les insectes inféodés aux structures reproductives des conifères. In: Ferron P, Missonnier J, Mauchamp B (eds) Régulation des cycles saisonniers chez les invertébrés. Les Colloques de l'INRA 52, INRA Dourdan, France, pp 113–116

  • Seger J, Brockmann JH (1987) What is bet-hedging? Oxford Surv Evol Biol 4:182–211

    Google Scholar 

  • Solignat G (1958) Observations sur la biologie du châtaignier. Ann Amél Plantes 9:31–58

    Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–445

    Google Scholar 

  • Sullivan CR, Wallace DR (1967) Interaction of temperature and photoperiod in the induction of prolonged diapause in Neodiprion sertifer. Can Entomol 99:834–849

    Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, Oxford

    Google Scholar 

  • Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trend Ecol Evol 6:246–249

    Google Scholar 

  • Ushatinskaya RS (1978) Seasonal migration of adult Leptinotarsa decemlineata (Insecta, Coleoptera) in different types of soil and physiological variations of individuals in hibernating populations. Pedobiologia 18:102–126

    Google Scholar 

  • Ushatinskaya RS (1984) A critical review of the superdiapause in insects. Ann Zool 21:3–30

    Google Scholar 

  • Waldbauer GP (1978) Phenological adaptation and the polymodal emergence patterns of insects. In: Dingle H (ed) Evolution of insect migration and diapause. Springer, Berlin, pp 127–144

    Google Scholar 

  • Walker TJ (1986) Stochastic polyphenism: coping with uncertainty. Fla Entomol 69:46–62

    Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Google Scholar 

  • Wourms JP (1972) The developmental biology of annual fishes III. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes. J Exp Zool 183:389–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menu, F., Debouzie, D. Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae). Oecologia 93, 367–373 (1993). https://doi.org/10.1007/BF00317880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317880

Key words

Navigation