Skip to main content
Log in

The role of cerebral blood flow for the recovery of the brain after prolonged ischemia

  • Original Investigations
  • Published:
Zeitschrift für Neurologie Aims and scope Submit manuscript

Summary

Complete cerebral ischemia of 30 and 60 min was produced in normothermic cats by arterial clamping and lowering of the blood pressure. The functional impact was monitored by electrophysiological methods. In animals without functional recovery blood flow was not fully restored after ischemia. In the animals in which signs of neuronal function returned, ischemia was followed by a transient phase of hyperemia, the termination of which coincided with the return of spontaneous EEG activity. At this time cerebrovascular autoregulation was present, but CO2 responsiveness was still completely abolished, and vasoactive drugs (papaverine, aminophylline, alpha adrenergic blocking agents, hydergine) failed to increase cerebral blood flow.

Zusammenfassung

An normothermen Katzen wurde die Durchblutung des Gehirns für eine Dauer von 30 und 60 min durch Abklemmen der Aa. innominata und subclavia sinistra bei gleichzeitiger Blutdrucksenkung vollständig unterbrochen. Die Auswirkung der Ischämie auf das Hirn wurde elektrophysiologisch verfolgt. Bei Tieren ohne funktionelle Erholung war die Blutrezirkulation im Anschluß an die Ischämie erheblich vermindert. Traten jedoch Zeichen funktioneller Erholung auf, so war die Durchblutung nach der Ischämie erhöht und normalisierte sich erst, wenn die ersten spontanen EEG-Wellen zurückkehrten. Zu diesem Zeitpunkt hatte sich die Autoregulation, nicht aber die CO2-Reaktivität der Hirngefäße normalisiert. In der postischämischen Phase konnte eine Steigerung der Hirndurchblutung durch vasoaktive Substanzen (Papaverin, Aminophyllin, Alpha-Receptoren-blokkierende Substanzen, Hydergin) nicht erzielt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames III, A., Wright, R. L., Kowada, M., Thurston, J. M. Majno, G.: Cerebral ischemia. II. The no-reflow phenomenon. Amer. J. Path. 52, 437–453 (1968).

    Google Scholar 

  2. Baldy-Moulinier, M.: Cerebral reflow after anoxia. In: Ross Russell, R. W. (ed.): Brain and blood flow, pp. 187–190. London: Pitman Medical and Scientific Publishing 1971.

    Google Scholar 

  3. Betz, E., Kozak, R.: Der Einfluß der Wasserstoffionenkonzentration der Gehirnrinde auf die Regulation der corticalen Durchblutung. Pflügers Arch. 293, 56–67 (1967).

    Google Scholar 

  4. Cantu, R. C.: Factors influencing postischemic cerebral vascular obstruction. Surg. Forum 20, 426–428 (1969).

    Google Scholar 

  5. Cantu, R. C., Ames III, A., Digiacinto, G., Dixon, J.: Hypotension: A major factor limiting recovery from cerebral ischemia. J. surg. Res. 9, 525–529 (1969).

    Google Scholar 

  6. Chiang, J., Kowada, M., Ames III, A., Wright, R. L., Majno, G.: Cerebral ischemia. III. Vascular changes. Amer. J. Path. 52, 455–476 (1968).

    Google Scholar 

  7. Crowell, J. W., Sharpe, G. P., Lambright, R. L., Read, W. L.: The mechanism of death after resuscitation following acute circulatory failure. Surgery 38, 696–702 (1955).

    Google Scholar 

  8. Crowell, J. W., Smith, E. E.: Effect of fibrinolytic activation on survival and cerebral damage following periods of circulatory arrest. Amer. J. Physiol. 186, 283–285 (1956).

    Google Scholar 

  9. Digiacinto, G., Cantu, R. C.: Influence of hypertension on postischemic cerebrovascular obstruction. J. surg. Res. 10, 229–232 (1970).

    Google Scholar 

  10. Ekström-Jodal, B.: On the relation between blood pressure and blood flow in the canine brain with particular regard to the mechanism responsible for cerebral blood flow autoregulation. Acta physiol. scand., Suppl. 350, 61 (1970).

    Google Scholar 

  11. Emmenegger, H., Meier-Ruge, W.: The actions of hydergine® on the brain. A histochemical, circulatory and neurophysiological study. Pharmacology (Basel) 1, 65–78 (1968).

    Google Scholar 

  12. Fazekas, J. F., Alman, R. W.: Maximal dilatation of cerebral vessels. Arch. Neurol. (Chic.) 11, 303–309 (1964).

    Google Scholar 

  13. Fieschi, C., Agnoli, A., Battistini, N., Bozzao, L., Prencipe, M.: Derangement of regional cerebral blood flow and of its regulatory mechanisms in acute cerebrovascular lesions. Neurology (Minneap.) 18, 1166–1179 (1968).

    Google Scholar 

  14. Gottstein, U., Held, K., Sedlmeyer, I.: Cerebral and peripheral blood flow as affected by induced hemodilution. In: Hemodilution. Theoretical Basis and Clinical Application. Int. Symp. Rottach-Egern 1971, pp. 247–257. Basel: Karger 1972.

    Google Scholar 

  15. Häggendal, E., Johansson, B.: Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta physiol. scand. 66, Suppl. 258, 27–53 (1965).

    Google Scholar 

  16. Häggendal, E., Norbäck, B.: Effect of viscosity on cerebral blood flow. Acta chir. scand., Suppl. 364, 13–21 (1966).

    Google Scholar 

  17. Häggendal, E., Löfgren, J., Nilsson, N. J., Zwetnow, N. N.: Effects of varied cerebrospinal fluid pressure on cerebral blood flow in dogs. Acta physiol. scand. 79, 262–271 (1970).

    Google Scholar 

  18. Häggendal, E., Löfgren, J., Nilsson, N. J., Zwetnow, N. N.: Prolonged cerebral hyperemia after periods of increased cerebrospinal fluid pressure in dogs. Acta physiol. scand. 79, 272–279 (1970).

    Google Scholar 

  19. Harper, A. M., Glass, H. I.: Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J. Neurol. Neurosurg. Psychiat. 28, 449–452 (1965).

    Google Scholar 

  20. Hekmatpanah, J.: Cerebral circulation and perfusion in experimental increased intracranial pressure. J. Neurosurg. 32, 21–29 (1970).

    Google Scholar 

  21. Hills, C. P.: Ultrastructural changes in the capillary bed of the rat cerebral cortex in anoxic-ischemic brain lesions. Amer. J. Path. 44, 531–543 (1964).

    Google Scholar 

  22. Hirsch, H., Gaentgens, P., Sobbe, A.: Änderungen des Siebungsdruckes nach Ischämie von Gehirn, Extremität und Niere. Pflügers Arch. ges. Physiol. 281, 191–200 (1964).

    Google Scholar 

  23. Hirsch, H., Schneider, M.: Durchblutung und Sauerstoffaufnahme des Gehirns. In: Handbuch der Neurochirurgie Vol. 1, Sect. 2, pp. 434–552, H. Olivecrona and W. Tönnis., Eds. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  24. Hossmann, K.-A., Olsson, Y.: Suppression and recovery of neuronal function in transient cerebral ischemia. Brain Res. 22, 313–325 (1970).

    Google Scholar 

  25. Hossmann, K.-A., Sato, K.: The effect of ischemia on sensorimotor cortex of cat. Electrophysiological, biochemical and electronmicroscopical observations. Z. Neurol. 198, 33–45 (1970).

    Google Scholar 

  26. Hossmann, K.-A., Sato, K.: Effect of ischemia on the function of the sensorimotor cortex in cat. Electroenceph. clin. Neurophysiol. 30, 535–545 (1971).

    Google Scholar 

  27. Hossmann, K.-A., Lechtape-Grüter, H.: Blood flow in the cat brain after complete cerebral ischemia. Pan. Med. 13, 184 (1971).

    Google Scholar 

  28. Hutten, H., Brock, M.: The two-minutes-flow-index (TMFI). In: Ross Russell, R. W. (ed.): Cerebral blood flow, pp. 19–23. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  29. Ingvar, D. H., Lassen, N. A.: Quantitative determination of regional cerebral blood flow in man. Lancet 1961 II, 806–807.

    Google Scholar 

  30. Ingvar, D. H., Lassen, N. A.: Regional blood flow of the cerebral cortex determined by krypton 85. Acta physiol. scand. 54, 325–338 (1962).

    Google Scholar 

  31. Kabat, H., Dennis, C., Baker, A. B.: Recovery of function following arrest of the brain circulation. Amer. J. Physiol. 132, 737–747 (1941).

    Google Scholar 

  32. Käufer, C., Penin, H., Düx, A., Kersting, G., Schneider, H., Kubicki, S.: Zerebraler Zirkulationsstillstand bei Hirntod durch Hypoxydosen. Fortschr. Med. 87, 713–717 (1969).

    Google Scholar 

  33. Kobayashi, S., Waltz, A. G., Rhoton, A. L., Jr.: Effects of stimulation of cervical sympathetic nerves on cortical blood flow and vascular reactivity. Neurology (Minneap.) 21, 297–302 (1971).

    Google Scholar 

  34. Kogure, K., Scheinberg, P., Reinmuth, O. M., Fujishima, M., Busto, R.: Mechanisms of cerebral vasodilatation in hypoxia. J. appl. Physiol. 29, 223–229 (1970).

    Google Scholar 

  35. Langfitt, T. W., Weinstein, J. D., Kassell, N. F.: Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology (Minneap.) 15, 622–641 (1965).

    Google Scholar 

  36. Lassen, N. A.: The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet 1966 II, 1113–1115.

    Google Scholar 

  37. Lassen, N. A., Wahl, M., Deetjen, P., Thurau, K., Ingvar, D. H.: Regulation of cerebral arteriolar diameter by extracellular pH variations in the perivascular fluid. In: R. W. Ross Russell (ed.): Brain and blood flow, pp. 174–177. London: Pitman 1971.

    Google Scholar 

  38. Lowry, O. H., Passonneau, J. V.: The relationships between substrates and enzymes of glycolysis in brain. J. biol. Chem. 239, 31–42 (1964).

    Google Scholar 

  39. Macdonell, L., Xanalatos, C., Hall, S., James, I. M.: Factors affecting the response of cerebral metabolism and blood flow to a Noradrenaline infusion in the dog. Europ. Neurol. 6, 208–212 (1971–72).

    Google Scholar 

  40. McHenry, L. C., Jr., Jaffe, M. E., Kawamura, J., Goldberg, H. I.: Effect of papaverine on regional blood flow in focal vascular disease of the brain. New Engl. J. Med. 282, 1167–1170 (1970).

    Google Scholar 

  41. Neubuerger, K. T.: Lesions of the human brain following circulatory arrest. J. Neuropath. exp. Neurol. 13, 144–160 (1954).

    Google Scholar 

  42. Novack, P., Shenkin, H. A., Bortin, L., Goluboff, B., Soffe, A. M.: Effects of carbon dioxide inhalation upon cerebral blood flow and cerebral oxygen consumption in vascular disease. J. clin. Invest. 32, 696–702 (1953).

    Google Scholar 

  43. Olsson, Y., Hossmann, K.-A.: The effect of intravascular saline perfusion on the sequelae of transient cerebral ischemia. Light and electron microscopical observations. Acta neuropath. (Berl.) 17, 68–79 (1971).

    Google Scholar 

  44. Raichle, M. E., Stone, H. L.: Cerebral blood flow autoregulation and graded hypercapnia. Europ. Neurol. 6, 1–5 (1971/72).

    Google Scholar 

  45. Reichelt, K. L.: The chemical basis for the intolerance of the brain to anoxia. Acta anaesth. scand., Suppl. 29, 35–46 (1968).

    Google Scholar 

  46. Shalit, M. N., Shimojyo, S., Reinmuth, O. M., Lockhart, W. S., Jr., Scheinberg, P.: The mechanism of action of carbon dioxide in the regulation of cerebral blood flow. Progr. Brain Res. 30, 103–106 (1968).

    Google Scholar 

  47. Skinhoj, E., Paulson, O. B.: The mechanism of action of aminophylline upon cerebral vascular disorders. Acta neurol. scand. 46, 129–140 (1970).

    Google Scholar 

  48. Smith, D. R., Ducker, T. B., Kempe, L. G.: Temporary experimental intracranial vascular occlusion. Effect of massive doses of heparin on brain survival. J. Neurosurg. 30, 537–544 (1969).

    Google Scholar 

  49. Sokoloff, L.: The effects of carbon dioxide on the cerebral circulation. Anesthesiology 21, 664–673 (1960).

    Google Scholar 

  50. Sundt, T. M., Jr., Waltz, A. G.: Hemodilution and anticoagulation. Effects on the microvasculature and microcirculation of the cerebral cortex after arterial occlusion. Neurology (Minneap.) 17, 230–238 (1967).

    Google Scholar 

  51. Symon, L.: Hyperaemia in the cerebral circulation. In: R. W. Ross Russell (ed.): Brain and blood flow, pp. 195–199. London: Pitman 1971.

    Google Scholar 

  52. Symon, L., Held, K., Dorsch, N. W. C.: On the myogenic nature of the autoregulatory mechanism in the cerebral circulation. Europ. Neurol. 6, 11–18 (1971/72).

    Google Scholar 

  53. Szewczykowski, J., Meyer, J. S., Kondo, A., Nomura, F., Teraura, T.: Effects of ergot alkaloids (Hydergine) on cerebral hemodynamics and oxygen consumption in monkeys. J. neurol. Sci. 10, 25–31 (1970).

    Google Scholar 

  54. Waltz, A. G.: Effect of PaCO2 on blood flow and microvasculature of ischemic and non-ischemic cerebral cortex. Stroke 1, 27–37 (1970).

    Google Scholar 

  55. Zimmer, R., Lang, R., Oberdörster, G.: Post-ischemic reactive hyperemia of the isolated perfused brain of the dog. Pflügers Arch. 328, 332–343 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossmann, KA., Lechtape-Grüter, H. & Hossmann, V. The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z. Neurol. 204, 281–299 (1973). https://doi.org/10.1007/BF00316009

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00316009

Key words

Navigation