Skip to main content
Log in

Molecular properties of the lys1 + gene and the regulation of α-aminoadipate reductase in Schizosaccharomyces pombe

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The α-aminoadipate pathway for the biosynthesis of lysine is unique to fungi. Molecular properties of the cloned lys1 + gene and the regulation of the encoded α-aminoadipate reductase (AAR) were investigated in the fission yeast Schizosaccharomyces pombe. A 5.2-kb HindIII-EcoRI fragment of S. pombe DNA, containing a functional lys1 + gene and a promoter, was subcloned to make the 10.7-kb plasmid pLYS1H. A nested 1.778-kb HindIII-EcoRI DNA fragment that complemented the lys1-131 mutant phenotype was sequenced from the plasmid pLYS1D, and shown to contain an open reading frame (ORF) of 470 amino acids, preceded by putative POLII promoter elements (TATA and CCAAT box elements, and two potential yeast GCN4-binding motifs) within 368 bp upstream of the start codon. This ORF shared with the corresponding region of the isofunctional AAR of Saccharomyces cerevisiae 49% amino-acid identity (62% similarity) overall, within which were smaller regions of marked sequence conservation. One such region coincided (95% identity) with a putative AMP-binding domain motif identified in the AAR of S. cerevisiae. In wild-type S. pombe, AAR activity from cells grown in lysine-supplemented minimal or YEPD media was less than the activity of cells grown in minimal mediu. The AAR of S. pombe was more sensitive to feedback inhibition by lysine in vitro than the AAR of S. cerevisiae. These results show the effects of extensive evolutionary divergence on the structure and expression of a pivotal enzyme in the α-aminoadipate pathway. Presumably, delineated regions of strong sequence conservation correspond to discrete domains essential to AAR function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affezeller K, Jaklitsch WM, Holinger C, Kubicek CP (1989) FEMS Microbiol Lett 58:293–297

    Google Scholar 

  • Babbitt PC, Kenyon GL (1992) Biochemistry 31:5594–5604

    Google Scholar 

  • Bach ML (1987) Curr Genet 12:527–534

    Google Scholar 

  • Barnes DA, Thorner J (1986) Mol Cell Biol 6:2828–2838

    Google Scholar 

  • Beach D, Nurse P (1981) Nature 290:140–142

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Betterton HT, Fjellstedt, Matsuda M, Ogur M, Tate R (1968) Biochim Biophys Acta 170:459–461

    Google Scholar 

  • Bhattacharjee JK (1985) CRC Crit Rev Microbiol 12:131–151

    Google Scholar 

  • Bhattacharjee JK (1992) in: Mortlock RP (ed) Evolution of metabolic function. CRC Press, Boca Raton Florida, pp 47–79

    Google Scholar 

  • Bhattacharjee JK, Sinha AK (1972) Mol Gen Genet 115:26–30

    Google Scholar 

  • Biswas GD, Bhattacharjee JK (1974) Ant van Leeuwenhoek J Microbiol Serol 40:221–231

    Google Scholar 

  • Borell CW, Bhattacharjee JK (1988) Curr Genet 13:299–304

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Google Scholar 

  • Broker M (1987) Biotechniques 5:516–517

    Google Scholar 

  • Broquist HP (1971) Biotechniques 5:516–517

    Google Scholar 

  • Broquist HP (1971) Methods Enzymol 17b:112–129

    Google Scholar 

  • Demain AL, Masureker PS (1974) J Gen Microbiol 82:143–151

    Google Scholar 

  • Elbel H, Phillippsen P (1983) Mol Gen Genet 191:66–73

    Google Scholar 

  • Feller A, Dubois E, Ramos F (1994) Mol Cell Biol 14:6411–6418

    Google Scholar 

  • Fleig UN, Pridmore RD, Phillippsen P (1986) Gene 46:237–245

    Google Scholar 

  • Ford RA, Ye ZH, Bhattacharjee JK (1993) J Basic Microbiol 33:179–186

    Google Scholar 

  • Forsburg SL (1994) Yeast 10:1045–1047

    Google Scholar 

  • Garrad R, Schmidt TM, Bhattacharjee JK (1994) Infection Immunity 62:5027–5031

    Google Scholar 

  • Gray G, Bhattacharjee JK (1976) J Gen Microbiol 97:117–120

    Google Scholar 

  • Hinnenbusch GA (1988) Microbiol Rev 52:248–273

    Google Scholar 

  • Hope IA, Struhl K (1987) EMBO J 6:2781–2784

    Google Scholar 

  • Kozak M (1986) Cell 44:283–292

    Google Scholar 

  • Larson RL, Sandine W, Broquist HP (1963) J Biol Chem 238:275–282

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Maragoudakis ME, Holmes H, Strassman M (1967) J Bacteriol 93:1677–1680

    Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) The fission yeast Schizosaccharomyces pombe. In: Molecular biology of the fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Google Scholar 

  • Morris ME, Jinks-Robertson S (1991) Gene 98:141–145

    Google Scholar 

  • Olesen JT, Fikes JD, Guarente L (1991) Mol Cell Biol 11:611–619

    Google Scholar 

  • Pearson WR, Lipman DJ (1985) Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Polizzi C, Clarke L (1991) J Cell Biol 112:191–201

    Google Scholar 

  • Rajnarayan S, Vaughn JC, Bhattacharjee JK (1992) Curr Genet 21:13–16

    Google Scholar 

  • Ramos F, Dubois E, Pierand A (1988) Eur J Biochem 171:171–176

    Google Scholar 

  • Russell P (1989) In: Nasim et al. (eds) Molecular biology of the fission yeast. Academic Press, San Diego, California, pp 244–271

    Google Scholar 

  • Russell P, Nurse P (1986) Cell 45:781–782

    Google Scholar 

  • Sanger FS, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sagisaka S, Shimura K (1962) Biochem Tokoyo 52:155–159

    Google Scholar 

  • Sinha AK, Bhattacharjee JK (1970) Biochem Biophys Res Commun 39:1205–1210

    Google Scholar 

  • Sinha AK, Bhattacharjee JK (1970) Biochem B 125:743–749

    Google Scholar 

  • Storts DR, Bhattacharjee JK (1989) Biochem Biophys Res Commun 161:182–186

    Google Scholar 

  • Strassman M, Weinhouse S (1953) J Am Chem Soc 75:1680–1684

    Google Scholar 

  • Tucci AF (1969) J Bacteriol 99:624–625

    Google Scholar 

  • Umbarger HE (1978) Annu Rev Biochem 47:533–606

    Google Scholar 

  • Urrestarazu LA, Borell CW, Bhattacharjee JK (1985) Curr Genet 9:341–344

    Google Scholar 

  • Vogel HJ (1960) Biochim Biophys Acta 41:172–174

    Google Scholar 

  • Winston MK, Bhattacharjee JK (1987) Cur Genet 11:393–398

    Google Scholar 

  • Wolfner M, Messenguy F, Fink GR (1975) J Mol Biol 96:273–281

    Google Scholar 

  • Ye ZH, Bhattacharjee JK (1988) J Bacteriol 170:5968–5970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, R.A., Bhattacharjee, J.K. Molecular properties of the lys1 + gene and the regulation of α-aminoadipate reductase in Schizosaccharomyces pombe . Curr Genet 28, 131–137 (1995). https://doi.org/10.1007/BF00315779

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315779

Key words

Navigation