Skip to main content
Log in

Effect of chronic centrifugation on the structural development of the musculoskeletal system of the rat

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

25 female Sprague-Dawley rats were placed on a 3.66 m radius centrifuge and subsequently exposed almost continuously for 810 days to 2.76 G. Compared to normal gravity controls, the most noticeable effect of hypergravity was, the inhibition of growth of the centrifuged animals. The rats exposed to hypergravity showed on average a smaller femur length (-6.5%), a smaller cross-sectional area (-7.7%), when expressed linearly, i.e. (area/π)1/2), and smaller outer and inner cross-sectional radii (linearly-9.3% and-12.3%) at the mid-shaft of the femoral bones. The growth inhibition of 3 hind-leg muscles was on average significantly less ranging from (-3.5% to-4.1%), compared to the growth inhibition of the linear dimension of the femur.

Statistically there was no difference in the slope and elevation of the regression of the square-root of the cross-sectional area divided by π on the length of the femur between centrifuged animals and their 16 age matched controls. In the weight control group of 24 animals, comprised of 34, 74, and 102 day old rats, the corresponding regression line was parallel and lower in elevation by-12.8%, compared to the line for the centrifuged and age control groups. But, compared to the regression derived from all control animals ranging from 34 to 840 days of age, the cross-sectional area at the mid-shaft of the femur was 8.4% greater in the rats exposed to 2.76 G for 810 days.

The slopes of the regression of the outer radius at mid-shaft on the length of the femur were the same in the centrifuged group and in the weight and age control groups of animals. But, the regression lines differed in elevation by-4.4% on average between the centrifuged and age control animals. The line for the regression of the inner radius at the mid-shaft on the length of the femur was parallel and lower in elevation by-7.6% in the centrifuged animals compared to the line for the age controls. But, compared to all control animals living at normal gravity, the outer radius was increased by 3.0% and the inner radius was decreased by 5.7% in the animals exposed to 2.76 G for 810 days. Since the centrifuged animals were all 840 days old, while the controls were from 34 to 840 days old, only further experiments comparing centrifuged and control animals of the same age at various growth stages will be able to furnish evidence for an unambiguous bone hypertrophy.

The regressions of the cube-root of body weight on length of the femur deviate significantly in the 3 groups of animals. The heavier rats of the age control group have relatively shorter femurs than the lighter animals. The opposite applies to the centrifuged and the weight control groups of rats.

Although the rats on the centrifuge are markedly smaller in overall body size than the controls, they exhibit on average the same absolute muscle weights as the animals at earth gravity, if rats of the same overall body size are compared. As shown by partial correlation analysis, the cross-sectional area along with both the inner and outer radii at the midshaft of the femur are significantly smaller in the age controls, compared to the centrifuged group, while the dry weight of the gluteus medius muscle is greater. In the centrifuged group, however, the cross-sectional area of the femoral shaft increases exclusively by a decrease of the inner radius, while the dry weight of the gluteus medius increases. It is further shown that centrifugation has a significant effect on the relationships between cross-sectional dimensions at the mid-length of the femoral shaft and the dry weights of the triceps and of the semimembranosus muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, N., Brooks, B.: An experimental study of the changes in bone which result from non-use. Surg. Gynec. Obstet. 33, 250–260 (1921)

    Google Scholar 

  • Amtmann, E.: Mechanical stress, functional adaptation and the variation structure of the human femur diaphysis. Ergebn. Anat. Entwickl.-Gesch. 44, 1–89 (1971)

    Google Scholar 

  • Amtmann, E.: Experimentelle und theoretische Untersuchungen über den funktionellen Bau des Knochens. Ber. phys.-med. Ges. Würzburn, N.F. 81, 161–171 (1973)

    Google Scholar 

  • Amtmann, E.: An effect of gravity on the postnatal development of the human and rat femur. Z. Anat. Entwickl.-Gesch. 143, 159–183 (1974)

    Google Scholar 

  • Amtmann, E.: Hypergravity effects on bone size and shape in rats and dogs. J. Anat. (Lond.) 120, 403 (1975a)

    Google Scholar 

  • Amtmann, E.: Structural development of bone in rats and dogs at earth gravity and hypergravity. Proceedings Xth Int. Cong. Anatomist Tokyo, Japan, p. 74. 1975. Edit. by E. Yamada, Science Council of Japan (1975 b)

  • Amtmann, E., Oyama, J.: Changes in functional contruction of bone in rats under conditions of simulated increased gravity. Z. Anat. Entwickl.-Gesch. 139, 307–318 (1973)

    Google Scholar 

  • Amtmann, E., Oyama, J., Fisher, G. L.: Effect of chronic centrifugation on the muskuloskeletal system of the dog. Anat. Embryol. 149, 71–78 (1976)

    Google Scholar 

  • Appleton, A. B.: Postural deformities and bone growth. Lancet 1934I, 451–454

  • Arkin, A. M., Katz, J. F.: The effects of pressure on epiphyseal growth. J. Bone Jt. Surg. A 38, 1056–1076 (1956)

    Google Scholar 

  • Ascenzi, A., Bell, G. H.: Bone as a mechanical engineering problem. In: The biochemistry and physiology of bone. Bourne, G. H., Vol. I, pp. 311–352. New York and London: Academic Press 1972

    Google Scholar 

  • Bassett, C. A.: Biophysical principle affecting bone structure. In: The biochemistry and physiology of bone. Bourne, G. H., Vol. III, pp. 1–76. New York and London: Academic Press 1972

    Google Scholar 

  • Blaimont, P.: Contribution à l'étude biomécanique du fémur humain. Acta orthop. belg. 34, 665–844 (1968)

    Google Scholar 

  • Bird, J. W. C., Wunder, C. C., Sandler, N., Dodge, C. H.: Analysis of muscular development of mice at high gravity. Amer. J. Physiol. 204, 523–526 (1963)

    Google Scholar 

  • Briney, S. R., Wunder, C. C.: Growth of hamsters during continual centrifugation. Amer. J. Physiol. 202, 461–464 (1962)

    Google Scholar 

  • Burton, R. R., Besch, E. L., Sluka, S. J., Smith, A. H.: Differential effect of chronic acceleration upon skeletal muscles. J. appl. Physiol. 23, 80–84 (1967)

    Google Scholar 

  • Casey, H. W.: The influence of chronic acceleration on the effects of whole body irradiation in rats. Doctoral Thesis. Univ. Calif., Davis (1965)

  • Chamay, A., Tschantz, P.: Mechanical influence in bone remodelling. Experimental research on Wolff's law. J. Biochem. 5, 173–180 (1972)

    Google Scholar 

  • Dearden, L. C., Mosier, H. D.: Growth retardation and subsequent recovery of the rat tibia, a histochemical, light and electron microscopic study, I. After propylthiouracil treatment. Growth 38, 253–275 (1974a)

    Google Scholar 

  • Dearden, L. C., Mosier, H. D.: Growth retardation and subsequent recovery of the rat tibia, a histochemical, light and electron microscopic study II. After fasting. Growth 38, 277–294 (1974b)

    Google Scholar 

  • Dokládal, M.: Effect of the unilateral surgical removal of the musculus masseter in the dog (Canis familiaris). Folia morph. (Prague) 16, 150–161 (1968)

    Google Scholar 

  • Evans, F. G.: Stress and strain in bones. Their relation to fractures and osteogenesis. Springfield (Ill.): Ch. C. Thomas 1957

    Google Scholar 

  • Fosse, G.: The radiodensity of skeletal parts in animals growing and living in a constant artificially increased gravitational field. Growth 35, 33–35 (1971)

    Google Scholar 

  • Fosse, G., Gat, H., Holmbakken, N., Kvinnsland S.: Bone atrophy and hypergravity in mice. Growth 38, 329–342 (1974)

    Google Scholar 

  • Heřt, J.: Reaktion des Knochens auf mechanische Impulse. Teil IX. Bedeutung der Oberflächendrücke für die Modellierung der Diaphyse. Morph. Jb. 118, 351–368 (1972)

    Google Scholar 

  • Heřt, J.: Lišková, M., Landa, J.: Reaction of bone to mechanical stimuli. Part 1. Continuous and intermittent loading of tibia in rabbit. Folia morph. (Prague) 19, 290–300 (1971)

    Google Scholar 

  • Heřt, J., Přibylová, E., Lišková, M.: Reaction of bone to mechanical stimuli. Part 3: Microstructure of compact bone of rabbit tibia after intermittent loading. Acta anat. (Basel) 82, 218–230 (1972)

    Google Scholar 

  • Hindrichsen, G. J., Storey, E.: The effect of force on bone and bones. Angle Orthodont. 38, 155–165 (1968)

    Google Scholar 

  • Jankovich, J. P.: Structural development of bone in the rat under earth gravity, simulated weightlessness, hypergravity and mechanical vibration. NASA Contractor Report 1823, National Technical Information Service, Springfield, Virginia (1971)

    Google Scholar 

  • Keil, L. C.: Changes in growth and body composition of mice exposed to chronic centrifugation. Growth 33, 83–88 (1969)

    Google Scholar 

  • Knese, K.-H.: Knochenstruktur als Verbundbau. Stuttgart: Georg Thieme 1958

    Google Scholar 

  • Kummer, B.: Bauprinzipien des Säugertierskeletes. Stuttgart: Georg Thieme 1959

    Google Scholar 

  • Kummer, B.: Funktioneller Bau und funktionelle Anpassung des Knochens. Anat. Anz. 111, 261–293 (1962)

    Google Scholar 

  • Kummer, B.: Biomechanics of bone: mechanical properties, functional structure, functional adaptation. In: Fung, Y. C., Perrone, N., Anliker, M., Biomechanics: its foundations and objectives. Englewood Cliffs-New Jersey: Prentice-Hall, Inc. 1972

    Google Scholar 

  • Kummer, B.: Grundsäztliche Bemerkungen zum Einfluß der Körpergröße und der Gravitation auf die Konstruktion der Bewegungsapparate landbewohnender Tetrapoden. Aufsätze und Reden der Senckenbergisch Naturforschenden Gesellschaft, 1974

  • Lišková, M., Heřt, J.: Reaction of bone to mechanical stimuli. Part 2. Periosteal and endosteal reaction of tibial diaphysis in rabbit to intermittent loading. Folia morph. (Prague) 19, 301–317 (1971)

    Google Scholar 

  • Moss, M. L., Meehan, M.-A.: Functional cranial analysis of the coronoid process in the rat. Acta anat. (Basel) 77, 11–24 (1970)

    Google Scholar 

  • Murray, P. D. F.: Bones. A study in the development and structure of the vertebrate skeleton. Cambridge Univ. Press 1936

  • Oyama, J.: Response and adaptation of Beagle dogs to hypergravity. Life Sc. and Space Res. 13, 11–17 (1975)

    Google Scholar 

  • Oyama, J., Chan, L.: Oxygen consumption and carbon dioxide production in rats during acute centrifugation stress and after adaptation to chronic centrifugation. Fed. Proc. 32, 392 (1973)

    Google Scholar 

  • Oyama, J., Platt, W.T.: Effect of prolonged centrifugation on growth and organ development of rats. Amer. J. Physiol. 209, 611–615 (1965)

    Google Scholar 

  • Oyama, J., Platt, W. T.: Reproduction and growth of mice and rats under conditions of simulated increased gravity. Amer. J. Physiol. 212, 164–166 (1967)

    Google Scholar 

  • Oyama, J. Zeitman, B.: Tissue composition of rats exposed to chronic centrifugation. Amer. J. Physiol. 213, 1305–1310 (1967)

    Google Scholar 

  • Pauwels, F.: Gesammelte Abhandlung zur funktionellen Anatomie des Bewegungsapparates. Berlin-Heidelberg-New York: Springer 1965

    Google Scholar 

  • Riesenfeld, A.: Endocrine control of skeletal robusticity. Acta anat. (Basel) 91, 481–499 (1975)

    Google Scholar 

  • Roux, W.: Gesammelte Abhandlung über die Entwicklungsmechanik der Organismen, Bd. I and II. Leipzig: Wilhelm Engelmann 1895

    Google Scholar 

  • Ryöppy, S., Karaharju, E. O.: Alteration of epiphyseal growth by an experimentally produced angular deformity. Acta orthop. scand. 45, 490–498 (1974)

    Google Scholar 

  • Schumacher, G. H.: Der maxillo-mandibuläre Apparat unter dem Einfluß formgestaltender Faktoren. Nova Acta Leopold. No. 182, 1–186 (1968)

    Google Scholar 

  • Schumacher, G. H., Dokládal, M.: Über unterschiedliche Sekundärveränderungen am Schädel als Folge von Kaumuskelresektionen. Acta anat. (Basel) 69, 378–392 (1968)

    Google Scholar 

  • Smith, A. H.: Chronic acceleration. M. Burton, R. R., T. Hoshizaki, C. F. Kelley, A. H. Smith, and I. H. Wagman: Principles of gravitational biology. Vol. 9 of Space biology and medicine. Bioscience Programms Division of NASA (1972)

  • Smith, A. H., Burton, R. R.: Chronic acceleration of animals. In: Gravity and the organism, Gordon, S. A. and Cohen, M. J. (ed.). Chicago: Univ. of Chicago Press 1971

    Google Scholar 

  • Smith, A. H., Kelly, C. F.: Influence of chronic acceleration upon growth and body composition. Ann. N.Y. Acad. Sci 110, 410–424 (1963)

    Google Scholar 

  • Steel, F. L. D.: Early growth of rats in an increased gravitational field. Nature (Lond.) 193, 4815, 583–587 (1962)

    Google Scholar 

  • Stieve, H.: Versuche über die Tätigkeitsanpassung langer Röhrenknochen. Wilhelm Roux' Arch. Entwickl.-Mech. Org. 110, 528–556 (1927)

    Google Scholar 

  • Strobino, L. J., French, G. O., Colonna, P. C.: The effect of increasing tension on the growth of epiphyseal bone. Surg. Gynec. Obstet. 95, 694–700 (1952)

    Google Scholar 

  • Tschantz, P., Rutishauser, E.: La surcharge mécanique de l'os vivant. Ann. Anat. Path. 12, 223–248 (1967)

    Google Scholar 

  • Tulloh, N. M., Romberg, B.: An effect of gravity on bone development in lambs. Nature (Lond.) 200, 438–439 (1963)

    Google Scholar 

  • Washburn, S.: The relation of the temporal muscle to the form of the skull. Anat. Rec. 99, 239–248 (1947)

    Google Scholar 

  • Weissman, S. L., Tadmor, A., Khermosh, O., Michels, C. H., Chen, R.: Growth of the upper end of the femur. Experimental investigation in the rabbit. Acta orthop. scand. 45, 225–234 (1974)

    Google Scholar 

  • Wermel, J.: Untersuchungen über die Kinetogenese und ihre Bedeutung in der onto- und phylogenetischen Entwicklung. I. Mitteilung: Allgemeine Einleitung. Veränderung der Länge der Knochen. Morph. Jb. 74, 143–169 (1934)

    Google Scholar 

  • Wermel, J.: Untersuchungen über die Kinetogenese und ihre Bedeutung in der onto- und phylogenetischen Entwicklung. II. Mitt. Veränderung der Dicke und Masse der Knochen. Morph. Jb. 75, 92–127 (1935)

    Google Scholar 

  • Wolff, J.: Das Gesetzt der Transformation der Knochen. Berlin 1892

  • Wunder, C. C.: The effects of chronic acceleration of animals: a commentary pp. 389–411. In: A. Gordon and M. J. Cohen, Gravity in the organism. Chicago and London: University of Chicago Press 1971

    Google Scholar 

  • Wunder, C. C., Briney, S. R., Karl, M., Skaugstad, C.: Growth of mouse femurs during continual centrifugation. Nature (Lond.) 188, 151 (1960)

    Google Scholar 

  • Wunder, C. C., Lutherer, L. O., Dodge, C. H.: Survival and growth of organisms during lifelong exposure to high gravity. Aerospace Med 34, 5–11 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Portions of the paper were presented on the occasion of the Spring Meeting of the Anatomical Society of Great Britain and Ireland at Birmingham (England), April 10 to 11, 1975 (Amtmann, 1975a) and the Xth International Congress of Anatomists at Tokyo (Japan), August 1975 (amtmann, 1975b)

Portions of this investigation were done while this author was a NASA—NRC Senior Research Associate at Ames Research Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amtmann, E., Oyama, J. Effect of chronic centrifugation on the structural development of the musculoskeletal system of the rat. Anat Embryol 149, 47–70 (1976). https://doi.org/10.1007/BF00315084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315084

Key words

Navigation