Skip to main content
Log in

The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Cyclosporin A, a potent and clinically-important immunosuppressive drug (SandimmunR), is synthesized from its precursor amino acids by cyclosporin synthetase, a single multi-functional enzyme. In this study we report the cloning of the corresponding coding region of this synthetase. It contains an open reading frame of 45.8 kb which encodes a peptide with a calculated Mr of 1 689 243. The predicted gene product contains 11 aminoacid-activating domains that are very similar to one another and to the domains of other peptide synthetases. Seven of these domains harbour N-methyltransferase functions. This is the largest genomic ORF described so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billich A, Zocher R (1987) J Biol Chem 262: 17258–17259

    Google Scholar 

  • Borel JF, Feurer C, Gubler HU (1976) Agents Actions 6: 468

    Google Scholar 

  • Cannon PF (1986) Microbiol Sci 3: 285–287

    Google Scholar 

  • Cathala G, Savouret J-F, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1983) DNA 2: 329–335

    Google Scholar 

  • Cosmina P, Rodiguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Mol Microbiol 8: 821–831

    Google Scholar 

  • Diez B, Gutierrez S, Barredo JL, van Solingen P, van der Voort LHM, Martin JF (1990) J Biol Chem 265: 16358–16365

    Google Scholar 

  • Dreyfuss M, Härri E, Hofmann H, Kobel H, Pache W, Tscherter H (1976) Eur J Appl Microbiol 3: 125–133

    Google Scholar 

  • Gutiérrez S, Diéz B, Montenegro E, Martín JF (1991) J Bacteriol 173: 2354–2365

    Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) In Kinghorn JR (ed) Gene structure in eucaryotic microbes. IRL Press, Oxford, 93–139

    Google Scholar 

  • Gribskov M, Devereux J, Burgess RR (1984) Nucleic Acids Res 12: 539

    Google Scholar 

  • Haese A, Schubert M, Herrmann M, Zocher R (1993) Mol Microbiol 7: 905–914

    Google Scholar 

  • Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) J Biol Chem (in press)

  • Hori K, Yamamoto Y, Minetoki T, Kurotso T, Kanda M, Miura S, Okamura K, Furujama J, Saito Y (1989) J Biochem 106: 639–645

    Google Scholar 

  • Ingrosso D, Fowler AV, Bleibaum J, Clarke S (1989) J Biol Chem 264: 20131–20139

    Google Scholar 

  • Jofuku KD, Goldberg RB (1988) In Shaw CH (ed) Plant molecular biology: a practical approach. IRL press, Oxford, pp 37–66

    Google Scholar 

  • Kozak M (1981) Nucleic Acids Res 12: 857–872

    Google Scholar 

  • Kleinkauf H, von Döhren H (1990) Eur J Biochem 192: 1–15

    Google Scholar 

  • Kleinkauf H, Van Liempt H, Palissa H, von Döhren H (1992) Naturwissenschaften 79: 153–162

    Google Scholar 

  • Krätschmar J, Krause M, Marahiel MA (1989) J Bacteriol 171: 5422–5429

    Google Scholar 

  • Lawen A, Zocher R (1990) J Biol Chem 265: 19 11355–11360

    Google Scholar 

  • Lawen A, Traber R, Geyl D, Zocher R, Kleinkauf H (1989) J Antibiotics 42: 1283–1289

    Google Scholar 

  • Lawen A, Dittmann J, Schmidt B, Riesner D, Kleinkauf H (1992) Biochimie 74: 511–516

    Google Scholar 

  • McCabe AP, van Liempt H, Palissa H, Riach MBR, Pfeifer E, von Döhren H, Kinghorn JR (1991) J Biol Chem 266: 12646

    Google Scholar 

  • Offenzeller M, Zhuang Su, Santer, G Moser, H Traber R, Memmert K, Schneider-Scherzer E (1993) J Biol Chem 268: 26127–26134

    Google Scholar 

  • Rusnak F, Faraci WS, Walsh CT (1989) Biochemistry 28: 6827–6835

    Google Scholar 

  • Sambroock J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schlumbohm W, Stein T, Ullrich C, Vater J, Krause M, Marahiel MA, Kruft V, Wittmann-Liebold B (1991) J Biol Chem 266: 23135–23141

    Google Scholar 

  • Schmidt B, Riesner D, Lawen A, Kleinkauf H (1992) FEBS Lett 307: 355–360

    Google Scholar 

  • Scott-Craig JS, Panaccione DG, Pocard J-A, Walton JD (1992) J Biol Chem 267: 26044–26049

    Google Scholar 

  • Smith DJ, Earl AJ, Turner G (1990) EMBO J 9: 2743–2750

    Google Scholar 

  • Staden R (1984) Nucleic Acids Res 12: 505

    Google Scholar 

  • Turgay K, Krause M, Marahiel MA (1992) Mol Microbiol 6: 529–546

    Google Scholar 

  • Weckermann R, Fuerbass R, Marahiel MA (1988) Nucleic Acids Res 16: 11841

    Google Scholar 

  • Wood WI, Gitschier J, Lasky LA, Lawn RM (1985) Proc Natl Acad Sci USA 82: 1585

    Google Scholar 

  • Yu J, Cary JW, Bhatnagatr D, Cleveland TE, Keller NP, Chu FS (1993) Appl Environ Microbiol 59: 3564–3571

    Google Scholar 

  • Zocher R, Nihira T, Paul E, Madry N, Peeters H, Kleinkauf H, U Keller (1986) Biochemistry 25: 550–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, G., Schörgendorfer, K., Schneider-Scherzer, E. et al. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet 26, 120–125 (1994). https://doi.org/10.1007/BF00313798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313798

Key words

Navigation