Skip to main content
Log in

A biometric analysis of brain size in micrencephalics

  • Original Investigations
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Summary

Brain weight and head circumference in micrencephalic patients were analysed as a function of age, height and sex in relation to normal human standards. A quantitative definition of micrencephaly is proposed, which is based on these analyses. Evidence is presented, furthermore, that micrencephalics have a significantly lower brain weight in adolescence than in early childhood, and that this cerebral dystrophy continues throughout adulthood, leading to death in more than 85% of the males and 78% of the females before they reach the age of 30 years. Since this decline in brain weight after approximately 3–5 years of age is not accompanied by a similar reduction in head circumference, the brains of elderly micrencephalic patients no longer occupy the entire cranial cavity. It is evident, therefore, that head circumference in the case of micrencephaly is an unsuitable parameter for estimating brain size.

Zusammenfassung

Sowohl das Gehirngewicht wie der Kopfumfang wurden in einer Population mit micrencephalen Patienten analysiert und in Beziehung gesetzt zum Alter, zur Körpergröße, zum Geschlecht sowie zu den Standardmassen bei Normalen. Es wird eine quantitative Definition der Micrencephalie vorgeschlagen, die sich auf die erwähnten Meßresultate stützten. Es werden Hinweise dafür geliefert, daß micrencephale Individuen während der Adoleszenz ein signifikant niedrigeres Hirngewicht als in der frühen Kindheit aufweisen und daß somit die Gehirndystrophie während des Erwachsenenalters weiterschreitet. Schließlich führt sie bei mehr als 85% der Männer und 78% der Frauen vor Erreichen des 30. Lebensjahres zum Tode. Die Abnahme des Gehirngewichtes nach dem Alter von etwa 3 bis 5 Jahren wird nicht von einer parallelen Verminderung des Kopfumfanges begleitet. Das Gehirn nimmt also bei älteren Micrencephalen nicht mehr das gesamte Volumen der Schädelhöhle ein. Daraus ergibt sich, daß der Kopfumfang bei der Micrencephalie ein ungeeigneter Parameter zum Schätzen des Gehirnvolumens ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen N (1964) Development and degenerative diseases of the brain. In: Farmer TW (ed) Pediatric neurology. Harper and Row, New York, pp 162–284

    Google Scholar 

  2. Anderson JM, Hubbard BM, Coghill GR, Slidders W (1983) The effect of advanced old age on the neurone content of the cerebral cortex. J Neurol Sci 58:233–244

    Google Scholar 

  3. Böök JA, Schut JW, Reed SC (1953) A clinical and genetical study of microcephaly. Am J Men Defic 57:637–660

    Google Scholar 

  4. Bradley P, Berry M (1978) Quantitative effects of methylazoxymethanol acetate on Purkinje cell dendritic growth. Brain Res 143:499–511

    Google Scholar 

  5. Brandon MWG, Kirman BH, Williams CE (1959) Microcephaly. J Ment Sci 105:721–747

    Google Scholar 

  6. Brandt I (1979) Perzentilkurven für das Kopfumfangwachstum. Kinderarzt 10:185–188

    Google Scholar 

  7. Brummelkamp R (1937) Normale en abnormale hersengroei in verband met de Cephalisatie-leer. Ph.D. Thesis, Amsterdam

  8. Brummelkamp R (1942) Croissance cérébrale pathologique et céphalisation. Acta Neerl Morphol Norm Pathol 4:121–134

    Google Scholar 

  9. Connolly CJ (1950) External morphology of the primate brain. Thomas, Springfield

    Google Scholar 

  10. Cooke RWI, Lucas A, Yudkin PLN, Pryse-Davies J (1977) Head circumference as an index of brain weight in the fetus and newborn. Early Hum Dev 1:145–149

    Google Scholar 

  11. Dambska M, Haddad R, Kozlowsky PB, Lee HM, Shek J (1982) Telencephalic cytoarchitectonics in the brains of rats with graded degrees of micrencephaly. Acta Neuropathol (Berl) 58:203–209

    Google Scholar 

  12. Davies H, Kirman BH (1962) Microcephaly. Arch Dis Child 37:623–627

    Google Scholar 

  13. Dekaban AS, Sadowski D (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4:345–356

    Google Scholar 

  14. Deter RL, Harrist RB, Hadlock FP, Poindexter AN (1982) Longitudinal studies of fetal growth with the use of dynamic image ultrasonography. Am J Obstet Gynecol 143:545–554

    Google Scholar 

  15. Dobbing J, Sands J (1978) Head circumference, biparietal diameter and brain growth in fetal and postnatal life. Early Hum Dev 2:81–87

    Google Scholar 

  16. Edwards MJ (1981) Clinical disorders of fetal brain development: defects due to hyperthermia. In: Hetzel BS, Smith RMS (eds) Fetal brain disorders-recent approaches to the problem of mental deficiency. Elsevier Biomedical Press, Amsterdam, pp 335–364

    Google Scholar 

  17. Eichhorn DH, Bayley N (1962) Growth in head circumference from birth through young adulthood. Child Dev 33:257–271

    Google Scholar 

  18. Gruenwald P, Minh HN (1980) Evaluation of body and organ weights in perinatal pathology. Am J Clin Pathol 34:247–253

    Google Scholar 

  19. Halperin JJ, Williams RS, Kolodny EH (1982) Microcephaly vera, progressive motor neuron disease, and nigral degeneration. Neurology (Minneap) 32:317–320

    Google Scholar 

  20. Hemmer H (1971) Beitrag zur Erfassung der progressive Cephalisation bei Primaten. In: Beigert J, Leutenegger W (eds) Proceedings of the third congress of primatology. Karger, Basel, pp 99–107

    Google Scholar 

  21. Hicks SP, D'Amato CJ, Lowe MJ (1959) The development of the mammalian nervous system. J Comp Neurol 113:435–469

    Google Scholar 

  22. Hofman MA (1982) Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav Evol 20:84–96

    Google Scholar 

  23. Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58:495–512

    Google Scholar 

  24. Hofman MA (1984) Energy metabolism and relative brain size in human neonates from single and multiple gestations: an allometric study. Biol Neonate (in press)

  25. Jensen-Jazbutis GT (1970) Clinical-anatomical study of microcephalia vera (a microcephalic brother and sister with atrophy of the mamillary body). Journal Hirnforsch 12:287–305

    Google Scholar 

  26. Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  27. Minkowski M (1955) Sur les altérations de l'écorce cérébrale dans quelques cas de microcéphalie. Arch Suisses Neurol Psychiatr 76:110–173

    Google Scholar 

  28. Norman MG (1974) Hyaline (“Colloid”) cytoplasmic inclusions in motoneurones in association with familial micrencephaly, retardation and seizures. J Neurol Sci 23:63–70

    Google Scholar 

  29. Norman RM (1976) Malformations of the nervous system, prenatal damage and related conditions in early life. In: Blackwood W, Corsellis JAN (eds) Greenfield's neuropathology (revised by H Urich). Arnold, London, pp 361–470

    Google Scholar 

  30. O'Connell EJ, Feldt PH, Stickler GB (1964) Head circumference, mental retardation, and growth failure. Pediatrics 36:62–66

    Google Scholar 

  31. Passingham RE (1979) Brain size and intelligence in man. Brain Behav Evol 16:253–270

    Google Scholar 

  32. Pryor HB, Thelander H (1968) Abnormally small head size and intellect in children. J Pediatr 73:593–598

    Google Scholar 

  33. Qazi QH, Reed TE (1973) A problem in diagnosis of primary versus secondary microcephaly. Clin Genet 4:46–52

    Google Scholar 

  34. Robain O, Lyon G (1972) Les micrencéphalies familiales par malformation cérébrale. Acta Neuropathol (Berl) 58:203–209

    Google Scholar 

  35. Ross JJ, Frias JL (1977) Microcephaly. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 30. Elsevier Biomedical Press, Amsterdam, pp 507–524

    Google Scholar 

  36. Swaab DF, Mirmiran M (1983) Possible mechanisms underlying the teratogenic effects of medicines on the developing brain. In: Yanai J (ed) Neurobehavioral teratology; proceedings of the 13th CINP Congress, Jerusalem, 1982. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  37. Thelander HE, Pryor HB (1966) Abnormal patterns of growth and development in mongolism. Clin Pediatr (Phila) 5:493–502

    Google Scholar 

  38. Tobias PV (1970) Brain size, grey matter and race-fact or fiction. Am J Phys Anthropol 32:3–26

    Google Scholar 

  39. Van den Bosch J (1959) Microcephaly in the Netherlands: a clinical and genetical study. Ann Hum Genet 23:91–116

    Google Scholar 

  40. Von Monakow C (1926) Biologisches und Morphogenetisches über die Mikrocephalie Vera. Schweiz Arch Neurol Psychiatr 18:3–39

    Google Scholar 

  41. Williams RS (1979) Golgi and routine microscopic analysis of congenital microcephaly (“Microcephaly Vera”). Ann Neurol 6:173 (abstract)

    Google Scholar 

  42. Winick M, Rosso P (1969) Head circumference and cellular growth of the brain in normal and marasmic children. J Pediatr 74:774–778

    Google Scholar 

  43. Yamaura H, Ito M, Kubota K, Matsuzawa T (1980) Brain atrophy during aging: a quantitative study with computed tomography. J Gerontol 35:492–498

    Google Scholar 

  44. Ziehen Th (1913) Anatomie des Zentralnervensystems. Gustav Fischer Verlag, Jena

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofman, M.A. A biometric analysis of brain size in micrencephalics. J Neurol 231, 87–93 (1984). https://doi.org/10.1007/BF00313723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313723

Key words

Navigation