Skip to main content
Log in

A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A 1 380-bp intervening sequence within the mitochondrial small subunit ribosomal RNA (mt SSU rRNA) gene of the fungus Sclerotinia sclerotiorum has been sequenced and identified as a group-I intron. This is the first report of an intron in the mt SSU rRNA gene. The intron shows close similarity in secondary structure to the subgroup-IC2 introns from Podospora (ND3i1, ND5i2, and COIi5) and Neurospora (ND5i1). The intron has an open reading frame (ORF) that encodes a putative protein of 420 amino acids which contains two copies of the LAGLI-DADG motif. The ORF belongs to a family of ORFs identified in Podospora (ND3i1, ND4Li1, ND4Li2, ND5i2, and COIi5) and Neurospora (ND5i1). The putative 420-aa polypeptide is also similar to a site-specific endonuclease in the chloroplast large subunit ribosomal RNA (LSU rRNA) gene of the green alga Chlamydomonas eugametos. In each clone of S. sclerotiorum examined, including several clones which were sampled over a 3-year period from geographically separated sites, all isolates either had the intron or lacked the intron within the mt SSU rRNA gene. Screening by means of Southern hybridization and PCR amplification detected the intron in the mt SSU rRNA genes of S. minor, S. trifoliorum and Sclerotium cepivorum, but not in other members of the Sclerotiniaceae, such as Botrytis anamorphs of Botryotinia spp., or in other ascomycetous and basidiomycetous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Google Scholar 

  • Burke JM (1988) Molecular genetics of group-I introns: RNA structures and protein factors required for splicing—a review. Gene 73: 273–294

    Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group-I introns. Nucleic Acids Res 15: 7217–7221

    Google Scholar 

  • Carbone I, Kohn LM (1993) Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Sclerotiniaceae. Mycologia 85: 415–427

    Google Scholar 

  • Cech TR (1988) Conserved sequences and structures of group-I introns: building an active site for RNA catalysis—a review. Gene 73: 259–271

    Google Scholar 

  • Collins RA (1988) Evidence of natural selection to maintain a functional domain outside of the ‘core’ in a large subclass of group-I introns. Nucleic Acids Res 16: 2705–2715

    Google Scholar 

  • Cummings DJ, Domenico JM (1988) Sequence analysis of mitochondrial DNA from Podospora anserina. Pervasiveness of a class-I intron in three separate genes. J Mol Biol 204: 815–839

    Google Scholar 

  • Cummings DJ, Domenico JM, Nelson J, Sogin ML (1989a) DNA sequence, structure, and phylogenetic relationship of the small subunit rRNA coding region of mitochondrial DNA from Podospora anserina. J Mol Evol 28: 232–241

    Google Scholar 

  • Cummings DJ, Michel F, McNally KL (1989b) DNA sequence analysis of the 24.5-kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Curr Genet 16: 381–406

    Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17: 375–402

    Google Scholar 

  • Davies WR, Waring RB, Ray JA, Brown TA, Scazzocchio C (1982) Making ends meet: a model for RNA splicing in fungal mitochondria. Nature 300: 719–724

    Google Scholar 

  • Dávila-Aponte JA, Huss VAR, Sogin ML, Cech TR (1991) A selfsplicing group-I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus. Nucleic Acids Res 19: 4429–4436

    Google Scholar 

  • De Bièvre C, Dujon B (1992) Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit I and II genes, the ATPase9 gene, the NADH dehydrogenase ND4L and ND5 gene complex, and the glutaminyl, methionyl and arginyl tRNA genes from Trichophyton rubrum. Curr Genet 22: 229–234

    Google Scholar 

  • De Jonckheere JF (1993) A group-I intron in the SSU rDNA of some Naegleria spp. demonstrated by polymerase chain reaction amplification. J Euk Microbiol 40: 179–187

    Google Scholar 

  • DePriest PT, Been MD (1992) Numerous group-I introns with variable distributions in the ribosomal DNA of a lichen fungus. J Mol Biol 228: 315–321

    Google Scholar 

  • De Wachter R, Neefs J-M, Goris A, Van de Peer Y (1992) The gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis contains a group-I intron. Nucleic Acids Res 20: 1251–1257

    Google Scholar 

  • Embley TM, Dyal P, Kilvington S (1992) A group-I intron in the small subunit ribosomal RNA gene from Naegleria andersoni ssp. andersoni strain PPMFB-6. Nucleic Acids Res 20: 6411

    Google Scholar 

  • Gauthier A, Turmel M, Lemieux C (1991) A group-I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron. Curr Genet 19: 43–47

    Google Scholar 

  • Gilbert DG (1990) LoopViewer, a Macintosh program for visualizing RNA secondary structure. Published electronically on the Internet, available via anonymous ftp to iubio. bio. indiana. edu.

  • Griffin DH (1992) Nucleic acids and nucleotides. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol 4: fungal biotechnology. Marcel Dekker, Inc., New York, pp 445–473

    Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16s-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32: 155–216

    Google Scholar 

  • Gutell RR, Noller HF, Woese CR (1986) Higher order structure in ribosomal RNA. EMBO J 5: 1111–1113

    Google Scholar 

  • Hensgens LAM, Bonen L, De Haan M, Van der Horst G, Grivell LA (1983) Two intron sequences in the yeast mitochondrial COX1 gene: homology among URF-containing introns and strain-dependent variation in flanking exons. Cell 32: 379–389

    Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 86: 7706–7710

    Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1990) Predicting optimal and suboptimal secondary structure for RNA. In: Doolittle RF (ed) Methods in enzymology. Academic Press, San Diego, California, pp 281–306

    Google Scholar 

  • Kohli Y, Morrall RAA, Anderson JB, Kohn LM (1992) Local and trans-Canadian clonal distribution of Sclerotinia sclerotiorum on canola. Phytopathology 82: 875–880

    Google Scholar 

  • Kohli Y, Brunner LJ, Yoell H, Milgroom MG, Anderson JB, Morrall RAA, Kohn LM (in press) Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Mol Ecol

  • Kohn LM, Stasovski E, Carbone I, Royer J, Anderson JB (1991) Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology 81: 480–485

    Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62: 587–622

    Google Scholar 

  • Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31: 127–151

    Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227: 1435–1441

    Google Scholar 

  • Michel F (1984) A maturase-like coding sequence downstream of the OXI2 gene of yeast mitochondrial DNA is interrupted by two GC clusters and a putative end-of-messenger signal. Curr Genet 8: 307–317

    Google Scholar 

  • Michel F, Cummings DJ (1985) Analysis of class-I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr Genet 10: 69–79

    Google Scholar 

  • Michel F, Westhof E (1990) Modeling of the three-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. J Mol Biol 216: 585–610

    Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64: 867–881

    Google Scholar 

  • Mota EM, Collins RA (1988) Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 332: 654–656

    Google Scholar 

  • Neefs J-M, Van de Peer Y, De Rijk P, Chapelle S, De Wachter R (1993) Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21: 3025–3049

    Google Scholar 

  • Nishida H, Blanz PA, Sugiyama J (1993) The higher fungus Protomyces inouyei has two group-I introns in the 18s rRNA gene. J Mol Evol 37: 25–28

    Google Scholar 

  • Ragan MA, Bird CJ, Rice EL, Singh RK (1993) The nuclear 18s ribosomal RNA gene of the red alga Hildenbrandia rubra contains a group-I intron. Nucleic Acids Res 21: 3898

    Google Scholar 

  • Sogin ML, Edman JC (1989) A self-splicing intron in the small subunit rRNA gene of Pneumocystis carinii. Nucleic Acids Res 17: 5349–5359

    Google Scholar 

  • Stern S, Weiser B, Noller HF (1988) Model for the three-dimensional folding of 16s ribosomal RNA. J Mol Biol 204: 447–481

    Google Scholar 

  • Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C (1991) Six group-I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol 218: 293–311

    Google Scholar 

  • Turmel M, Gutell RR, Mercier J-P, Otis C, Lemieux C (1993) Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa: three internal transcribed spacers and 12 group-I intron insertion sites. J Mol Biol 232: 446–467

    Google Scholar 

  • Van der Horst G, Inoue T (1993) Requirements of a group-I intron for reactions at the 3′ splice site. J Mol Biol 229: 685–694

    Google Scholar 

  • Waring RB, Davies RW (1984) Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing—a review. Gene 28: 277–291

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, pp 315–322

    Google Scholar 

  • Wilcox LW, Lewis LA, Fuerst PA, Floyd GL (1992) Group-I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Mol Biol Evol 9: 1103–1118

    Google Scholar 

  • Zolan ME, Pukkila PJ (1986) Inheritance of DNA methylation in Coprinus cinereus. Mol Cell Biol 6: 195–200

    Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Bertrand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, I., Anderson, J.B. & Kohn, L.M. A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum . Curr Genet 27, 166–176 (1995). https://doi.org/10.1007/BF00313431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313431

Key words

Navigation