Skip to main content
Log in

Wing beat of Calliphora erythrocephala: Turning axis and gearbox of the wing base (Insecta, Diptera)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

In flight the wings of the blowfly Calliphora erythrocephala are driven by the indirect dorso-longitudinal (downstroke) and dorso-ventral muscles (upstroke). There are two “turning points” on the ventral wing joint, the anterior and posterior. The former consists of the pleural klöppel and its “fit” on the ventral anterior wing base. The connecting point between the anterior ventral peak of pterale II (wing base sclerite) and the underside of the dorsal end of the pleural wing joint forms the latter. A longitudinal axis going through the anterior and posterior turning point forms the “turning axis” for the wing-beat movements.

The pleural wing joint ends in a heart-shaped structure with three peaks. A groove in the tooth of the ventral radial vein, which is part of the ventral wing base, connects with one of these peaks, where it remains for several downstroke cycles. Cross sections through the stem of the pleural wing joint show a V-shaped configuration. The pull of the first subunit of the pleuro-tergal muscle bends this stem outward like a torsion rod. Inward movement is effected by its own elasticity and the pull of the subalar tendon. Outward movement enables the groove of the tooth of the ventral radial vein to contact one of the peaks if the wing base and the tooth are turned anteriorly by the combined pull of basalar muscles 1 and 2 onto the anterior wing edge. The wing is turned backward by the pull of the pterale III muscle 1 onto the posterior wing edge.

This contact can be used in two ways:

  1. 1.

    If the wing-base elements of one wing meet, the joint will click upward and the groove of the tooth loses its contact with a peak. Thus the downstroke amplitude of this wing will increase and the fly will turn contralaterally from this side where the wing-base elements meet. This movement works like a gear, extending the “wing-drive-independent” downstroke power unilaterally.

  2. 2.

    The joint does not click upward and the groove of the tooth remains in contact with a peak. The downstroke amplitude on this side now decreases and the fly turns ipsilaterally to this side. This would be a wing-beat stop (cf. Miyan and Ewing 1985a, b), which diminishes the wing-drive-independent downstroke power unilaterally. Besides an increase and decrease of flight power, the geometrical angles of attack may also have been altered (Pfau 1985). The upstroke occurs normally, passing over the anterior and posterior turning point — forming a turning axis — during flight regardless of whether contact (1) or (2) is used.

In flies, both right- and left-wing driving systems are coupled morphologically by the scutellum. Even while the stroke movements of the wings are synchronous, the direct muscles on one side of the thorax work independently of those on the other side, i.e., their function is wing-drive-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

atl :

anterior tergal lever

atp :

anterior turning point

ba :

basalare

b 1 + 2 :

basalar muscles 1 and 2

c :

contact region

co :

costal vein

f :

fit of the klöppel of the ventral radial vein

g 1–3 :

gear mechanism: peak 1, 2, 3

gr :

groove of the tooth of the ventral radial vein

hco :

head of the costal vein

hr :

head of the radial vein

ir :

insertion region of the tergo-pleural muscle

k :

klöppel

l :

ledge

mp :

middle plate

mps :

mechanical pulling spring

ms :

mesoscutum

msp :

mean stroke plane

n :

nob

nr :

notopleural ridge

p :

peak

pl :

pleural wall

ps 1 :

pleuro-sternal muscle 1

pt I :

pterale I

pt I ant :

anterior upper branch of pterale I

pt II :

pterale II

pt II ant :

anterior peak of pterale II

ptl :

posterior tergal lever

ptp :

posterior turning point

pw :

pulling wire

pwj :

pleural wing joint

r :

radial veins

r 1 :

radial vein 1

rt :

resin-containing tendon of the tergo-pleural muscle

ru :

ruler

s :

tripod

sa :

subalar

sem :

scanning electron microscope

sl :

scutellum

st :

subalar tendon

t :

torsion rod

ta :

turning axis

thla :

thoracic longitudinal axis

tp :

tergo-pleural muscle

tr :

transverse ridge

tvr :

tooth of the ventral radial vein

tvr + g :

interaction of the groove of the tooth with one of the peaks of the gear

w :

wing

III 1 :

pterale III muscle 1

References

  • Böttiger EG, Fursphan E (1952) The mechanics of flight movements in Diptera. Biol Bull Mar Biol Lab (Woods Hole) 102:200–211

    Google Scholar 

  • Bonhag PE (1949) The thoracic mechanism of the adult horsefly (Diptera: Tabanidae). Mem Cornell Agric Exp Station no 285

  • Ennos AR (1987) A comparative study of the flight mechanism of Diptera. J Exp Biol 127:355–372

    Google Scholar 

  • Heide G (1968) Flugsteuerung durch nicht-fibrilläre Flugmuskeln bei der Schmeißfliege Calliphora. Z Vergl Physiol 59:456–460

    Google Scholar 

  • Heide G (1971) Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora: I. Lage, Insertionsstellen und Innervationsmuster der Muskeln. Zool Jahrb Abt Allg Zoo Physiol 76:87–98

    Google Scholar 

  • Heide G (1971) Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora: II. Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jahrb Abt Allg Zool Physiol 76:99–137

    Google Scholar 

  • Künckel D'Herculais J (1875) Recherches sur l'organisation et le développement des Volucelles, insects diptères de la famille des syrphides. Part I, Paris

    Google Scholar 

  • Künckel D'Herculais J (1881) Recherches sur l'organisation et le développement des Diptères et en particulier des Volucelles de la famille des syrphides. Part II, Paris

    Google Scholar 

  • Mickoleit G (1962) Die Thoraxmuskulatur von Tipula vernalis Meigen. Ein Beitrag zur vergleichenden Anatomie des Dipterenthorax. Zool Jahrb Anat 80:213–244

    Google Scholar 

  • Mihályi F (1936) Untersuchungen über die Anatomie und Mechanik der Flugorgane an der Stubenfliege. Arb Ungari Biol Forsch Inst Tihany 8:106–119

    Google Scholar 

  • Miyan JA, Ewing AW (1984) A wing synchronous receptor for the dipteran flight motor. J Insect Physiol 307:567–574

    Google Scholar 

  • Miyan JA, Ewing AW (1985a) Is the “click”-mechanism an artefact of CCl4 anaesthesia? J Exp Biol 116:313–322

    Google Scholar 

  • Miyan JA, Ewing AW (1985b) How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Phil Trans R Soc Lond [B] 311:271–302

    Google Scholar 

  • Nachtigall W (1966) Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenfluges. Vergl Physiol 52:155–211

    Google Scholar 

  • Nachtigall W (1968) Über den Start des fibrillären Flugmotors bei calliphoriden Dipteren. Verh Dtsch Zool Ges Innsbruck 444–448

  • Nachtigall W (1968) Elektrophysiologische und kinematische Untersuchungen über Start und Stop des Flugmotors von Fliegen. Z Vergl Physiol 61:1–20

    Google Scholar 

  • Nachtigall W (1985) Calliphora as a model system for analysing insect flight. In: Kerkut GA, Gilbert LJ (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 5: Nervous system: structure and motor function. Pergamon Press, London, pp 571–605

    Google Scholar 

  • Nachtigall W, Wilson DM (1967) Neuro-muscular control of dipteran flight. J Exp Biol 47:77–97

    Google Scholar 

  • Pfau HK (1973) Fliegt unsere Schmeißfliege mit Gangschaltung? Naturwissenschaften 60:160

    Google Scholar 

  • Pfau HK (1977) Funktion einiger direkter tonischer Flügelmuskeln von Calliphora erythrocephala Meigen. Verh Dtsch Zool Ges 70:275

    Google Scholar 

  • Pfau HK (1985) Zur funktionellen und phylogenetischen Bedeutung der „Gangschaltung“ der Fliegen. Verh Dtsch Zool Ges 78:168

    Google Scholar 

  • Pfau HK (1987) Critical comments on a “novel mechanical model of dipteran flight” (Miyan and Ewing 1985). J Exp Biol 128:463–468

    Google Scholar 

  • Pringle JWS (1949) The excitation and contraction of the flight muscles of insects. J Physiol (Lond) 108:226–232

    Google Scholar 

  • Pringle JWS (1957) Insect flight. Cambridge University Press, London

    Google Scholar 

  • Pringle JWS (1961) The function of the direct muscles in the bee. Proc XI Int Congr Entomol, Vienna, vol 1, p 660

    Google Scholar 

  • Ritter W (1911) The flying apparatus of the blowfly. Smith Misc Collect 56:1–76

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37:889–907

    Google Scholar 

  • Wisser A, Nachtigall W (1983) Funktionelle Gelenkmorphologie und Flügelantrieb bei der Schmeißfliege. In: Nachtigall W (ed) BIONA-report 1, Fischer, Stuttgart New York, pp 29–34

    Google Scholar 

  • Wisser A, Nachtigall W (1984) Functional-morphological investigations on the flight muscles and their insertion points in the blowfly Calliphora erythrocephala (Insecta, Diptera). Zoomorphology 104:188–195

    Google Scholar 

  • Wisser A (1987) Mechanism of wing-rotating regulation in Calliphora erythrocephala (Insecta, Diptera). Zoomorphology 106:261–268

    Google Scholar 

  • Wyniger R (1974) Insektenzucht. Eugen Ulmer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisser, A. Wing beat of Calliphora erythrocephala: Turning axis and gearbox of the wing base (Insecta, Diptera). Zoomorphology 107, 359–369 (1988). https://doi.org/10.1007/BF00312219

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312219

Keywords

Navigation