Skip to main content
Log in

Structure and function of the prehensile tentilla of Euplokamis (Ctenophora, Cydippida)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Euplokamis has coiled tentilla on its tentacles, which can be discharged, flicking out at high velocity, when triggered by contact with prey. The tentillum adheres to prey by means of numerous colloblasts. Discharge, which takes 40–60 ms, is accomplished by contraction of striated muscles, found only in this genus among the Ctenophora. Restoration of the coiled state is attributable to passive, elastic components of the mesogloea. Rows of “boxes” (fluid-filled compartments) along the sides of the tentillum appear to stiffen the structure so that it does not collapse, kink or buckle during discharge. Smooth muscle fibres present in the tentillum may help pull the tentillum tight after prey have been captured.

In addition to the rapid discharge response, the tentillum can perform slower, spontaneous, rhythmic movements which, it is suggested, resemble the wriggling of a plank-tonic worm, enabling the tentillum to function as a lure. These movements appear to be executed by contraction of two sets of myofilament-packed cells which differ in several important respects from conventional smooth muscle. They belong to a novel and distinct cytological subset (“inner-ring cells”), other members of which are packed with microtubules and seem to be involved in secondary structuring of the collagenous component of the mesogloea.

Study of tentilla in different stages of development shows that the striated muscle fibres, originally nucleated, become enucleate as they differentiate and that the colloblasts form in association with accessory cells, as proposed by K. C. Schneider and G. Benwitz. The refractive granules which adhere to the outside of all mature colloblasts derive from these accessory cells. The colloblast nucleus undergoes changes during development suggestive of progressive loss of its role in transcription and protein synthesis, but it remains intact, contrary to statements in the literature.

The tentillum of Euplokamis can be regarded as a true food-capturing organ and it is probably the most highly developed organ in the phylum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann W, Jacob K, Rast A (1972) Über Tentakel und Colloblasten der Ctenophore Pleurobrachia pileus. Z Zellforsch 123:121–152

    Google Scholar 

  • Benwitz G (1978) Elektronenmikroskopische Untersuchung der Colloblasten-Entwicklung bei der Ctenophore Pleurobrachia pileus (Tentaculifera, Cydippea). Zoomorphology 89:257–278

    Google Scholar 

  • Chun C (1880) Die Ctenophoren des Golfes von Neapel. Fauna und Flora des Golfes von Neapel 1:311

    Google Scholar 

  • Franc J-M (1985) La Mésoglée des Cténaires: Approches ultrastructurale, biochimique et métabolique. Thesis, Université Claude Bernard (Lyon 1), pp 1–226

  • Franc J-M (1978) Organization and function of ctenophore colloblasts: an ultrastructural study. Biol Bull 155:527–541

    Google Scholar 

  • Franc S, Franc J-M, Garrone R (1976) Fine structure and cellular origin of collagenous matrices in primitive animals: Porifera, Cnidaria and Ctenophora. In: Robert L (ed) Frontiers in matrix biology, vol 3. Karger, Basle, pp 143–156

    Google Scholar 

  • Gilbert SP, Allen RD, Sloboda RD (1985) Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature 315:245–248

    Google Scholar 

  • Hernandez-Nicaise M-L (1968) Specialized connexions between nerve cells and mesenchymal cells in ctenophores. Nature 217:1075–1076

    Google Scholar 

  • Hernandez-Nicaise M-L (1973a) Le systéme nerveux des Cténaires: I. Structure et ultrastructure des réseaux epithéliaux. Z Zellforsch 137:223–250

    Google Scholar 

  • Hernandez-Nicaise M-L (1973b) Le systéme nerveux des Cténaires: II. Les éléments nerveux intra-mésogléens des béroidés et des cydippidés. Z Zellforsch 143:117–133

    Google Scholar 

  • Hernandez-Nicaise M-L (1973c) The nervous system of ctenophores: III. Ultrastructure of synapses. J Neurocytol 2:249–263

    Google Scholar 

  • Hernandez-Nicaise M-L (1974a) Ultrastructural evidence for a sensorimotor neuron in Ctenophora. Tissue Cell 6:43–47

    Google Scholar 

  • Hernandez-Nicaise M-L (1974b) Systéme nerveux et intégration chez les Cténaires: études ultrastructurale et comportementale. Thesis, Université Claude Bernard (Lyon 1), pp 1–200

  • Hernandez-Nicaise M-L, Bilbaut A, Malaval L, Nicaise G (1982) Isolation of functional giant smooth muscle cells from an invertebrate: structural features of relaxed and contracted fibres. Proc Natl Acad Sci USA 79:1884–1888

    Google Scholar 

  • Horridge GA (1965) Non-motile cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc R Soc [B] 162:333–350

    Google Scholar 

  • Hovasse R, de Puytorac P (1962) Contributions á la connaissance du colloblaste, grâce á la microscopie electronique. CR Acad Sci (Paris) [D] 255:3223–3225

    Google Scholar 

  • Hoyle G (1983) Muscles and their neural control. Wiley, New York, pp 1–689

    Google Scholar 

  • Hyman LH (1940) The invertebrates: Protozoa through Ctenophora. McGraw-Hill, New York, pp 726

    Google Scholar 

  • Komai T (1922) Studies on two aberrant ctenophores, Coeloplana and Gastrodes. Published by the author, Kyoto, pp 102

    Google Scholar 

  • Lendenfeld R von (1885) Über Coelenteraten der Südsee: VI. Neis cordigera Lesson, eine australische Beroide. Z Wiss Zool 41:673–682

    Google Scholar 

  • Mackie GO (1985) Midwater macroplankton of British Columbia studied by submersible PISCES: IV. J Plankton Res 7:753–777

    Google Scholar 

  • Mackie GO, Mills CE (1983) Use of Pisces IV submersible for zooplankton studies on coastal waters of British Columbia. Can J Fisheries Aquat Sci 40:763–776

    Google Scholar 

  • Purcell JE (1980) Influence of siphonophore behavior upon their natural diets: evidence for aggressive mimicry. Science 209:1045–1047

    Google Scholar 

  • Schneider KC (1902) Lehrbuch der vergleichenden Histologie der Tiere. Fischer, Jena, pp 1–988

    Google Scholar 

  • Storch V, Lehnert-Moritz K (1974) Zur Entwicklung der Kolloblasten von Pleurobrachia pileus (Ctenophora). Mar Biol 28:215–219

    Google Scholar 

  • Tamm SL (1982) Chapter 7, Ctenophora. In: Shelton GAB (ed) Electrical conduction and behaviour in “simple” invertebrates. Clarendon, Oxford, pp 266–358

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Arnold, London, pp 1–423

    Google Scholar 

  • Weill R (1935) Structure, origine et interprétation cytologique des colloblastes de Lampetia pancerina Chun (Cténophores). CR Acad Sci (Paris) [D] 200:1628–1630

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackie, G.O., Mills, C.E. & Singla, C.L. Structure and function of the prehensile tentilla of Euplokamis (Ctenophora, Cydippida). Zoomorphology 107, 319–337 (1988). https://doi.org/10.1007/BF00312216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312216

Keywords

Navigation