Skip to main content
Log in

The complete mitochondrial DNA sequence of Hansenula wingei reveals new characteristics of yeast mitochondria

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The complete 27 694-bp mitochondrial (mt) DNA sequence of Hansenula wingei, which is a typical budding yeast and contains circular mitochondrial DNA, has been determined. The mt sequence contains genes encoding large and small ribosomal RNAs, 25 tRNAs, three subunits of cytochrome c oxidase (subunits 1, 2 and 3), three subunits of ATPase (subunits 6, 8 and 9), apocytochrome b, seven subunits of NADH dehydrogenase (subunits 1, 2, 3, 4, 4L, 5 and 6), and a ribosomal protein, VAR1. The VAR1 gene is considered to be a typical yeast type. This is consistent with data on DNA and the deduced amino-acid sequence homology comparisons of genes ubiquitous in yeast and fungi. However, we have identified seven genes encoding NADH dehydrogenase subunits, which are not found in other yeast mitochondrial genomes, thus placing the H. wingei mitochondrial genome in a unique position. In addition the H. wingei mitochondrial genome also encodes one tRNA pseudogene and one short unidentified ORF. The genome is compact with only two introns both of which contain an ORF. One intron lies in the large rRNA gene while the other is situated in the cytochrome c oxidase subunit-1 gene. The conserved nonanucleotide motif (A/T)TATAAG (T/A)(A/T), which is a transcription start signal in Saccharomyces cerevisiae mitochondria, has also been found in the H. wingei mitochondrial genome. The codon assignments for ATA and CTN in H. wingei mitochondria are different from those in S. cerevisiae mitochondria. These results indicate a unique and novel structure for the H. wingei mitochondrial genome in terms of characteristics which are typical for both yeast and for filamentous fungi. This is the first complete mt DNA sequence report in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainley WM, Macreadie IG, Butow RA (1985) Var1 gene on the mitochondrial genome of Torulopsis glabrata. J Mol Biol 184:565–576

    Google Scholar 

  • Attardi G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    Google Scholar 

  • Bonitz SG, Bertani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77:3167–3170

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255:11927–11941

    Google Scholar 

  • Bos JL, Heyting C, Borst P, Arnberg AC, Van Bruggen EFJ (1978) An insert in the single gene for the large ribosomal RNA in yeast. Nature 275:336–338

    Google Scholar 

  • Brown TA (1993) Mitochondrial genome of Aspergillus nidulans. In: O'Brien SJ (ed) Genetic maps. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 3.85–3.86

    Google Scholar 

  • Brown TA, Waring RB, Scazzocchio C, Davies RW (1985) The Aspergillus nidulans mitochondrial genome. Curr Genet 9:113–117

    Google Scholar 

  • Burger G, Werner S (1986) Mitochondrial gene URF N of Neurospora crassa codes for a long polypeptide with highly repetitive structure. J Mol Biol 191:589–599

    Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group-I introns. Nucleic Acids Res 15:7217–7221

    Google Scholar 

  • Christianson T, Rabinowitz M (1983) Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanyltransferase. J Biol Chem 258:14025–14033

    Google Scholar 

  • Clark-Walker GD (1992) Evolution of mitochondrial genomes in fungi. Int Rev Cytol 141:89–127

    Google Scholar 

  • Clark-Walker GD, McArthur CR, Sriprakash KS (1985) Location of transcriptional control signals and transfer RNA sequences in Torulopsis glabrata mitochondrial DNA. EMBO J 4:465–473

    Google Scholar 

  • Collins RA (1993) Neurospora crassa laboratory strain 74-OR23–1A: mitochondrial genes. In: O'Brien SJ (ed) Genetic Maps, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 3.33–3.35

    Google Scholar 

  • Collins RA, Lambowitz AM (1983) Structural variations and optional introns in the mitochondrial DNAs of Neurospora strains isolated from nature. Plasmid 9:53–70

    Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM,Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402

    Google Scholar 

  • Delahodde A, Goguel V, Becam AM, Creusot F, Perea J, Banroques J, Jacq C (1989) Site-specific DNA endonuclease and maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell 56:431–441

    Google Scholar 

  • De Vries H, Alzner-DeWeerd B, Breitenberger CA, Chang DD, De Jonge JC, RajBhandary L (1986) The [E 35] stopper mutant of Neurospora crassa: precise localization of deletion endpoints in mitochondrial DNA and evidence that the deleted DNA codes for a subunit of NADH dehydrogenase. EMBO J 5:779–786

    Google Scholar 

  • De Zamaroczy M, Bernardi G (1986a) The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene 41:1–22

    Google Scholar 

  • De Zamaroczy M, Bernardi G (1986) The primary structure of the mitochondrial genome of Saccharomyces cerevisiae—a review. Gene 47:155–177

    Google Scholar 

  • Dujon B (1980) Sequence of the intron and flanking exons of the mitochondrial 21 SrRNA gene of yeast strains having different alleles at the ϖ and rib-1 loci. Cell 20:185–197

    Google Scholar 

  • Dyson NJ, Brown TA, Ray JA, Waring RB, Scazzocchio C, Davies RW (1989) Processing of mitochondrial RNA in Aspergillus nidulans. J Mol Biol 20:587–599

    Google Scholar 

  • Edwards JC, Levens D, Rabinowitz M (1983) Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell 31:337–346

    Google Scholar 

  • Fox TD (1987) Natural variation in the genetic code. Annu Rev Genet 21:67–91

    Google Scholar 

  • Hoeben P, Clark-Walker GD (1986) An approach to yeast classification by mapping mitochondrial DNA from Dekkera/Brettanomyces and Eniella genera. Curr Genet 10:371–379

    Google Scholar 

  • Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman LI (1982) Location and structure of the var1 gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell 30:617–626

    Google Scholar 

  • Labouesse H, Slonimski PP (1983) Construction of novel cytochrome b genes in yeast mitochondria by subtraction or addition of introns. EMBO J 2:269–276

    Google Scholar 

  • Lagerkvist U (1978) “Two out of three”: an alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762

    Google Scholar 

  • Li M, Tzagoloff A (1979) Assembly of the mitochondrial membrane system: sequence of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18:47–53

    Google Scholar 

  • Munz P, Wolf K, Kohli J, Leupold U (1989) Genetics overview. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, London, pp 1–30

    Google Scholar 

  • Nelson MA, Macino G (1987) Structure and expression of the over-lapping ND4L and ND5 genes of Neurospora crassa mitochondria. Mol Gen Genet 206:307–317

    Google Scholar 

  • Okamoto K, Suzuki K, Yoshida K (1991) Physical mapping and RFLP analysis of mtDNAs from the ascosporogenous yeasts: Saccharomyces exiguus, S. kluyveri and Hansenula wingei. Jpn J Genet 66:709–718

    Google Scholar 

  • Okamoto K, Suzuki K, Yoshida K (1992) Nucleotide sequences of ten mitochondrial tRNA genes in yeast Hansenula wingei. Nucleic Acids Res 20:2373

    Google Scholar 

  • Okamoto K, Sekito T, Yoshida K (1994) The mitochondrial genome of yeast Hansenula wingei encodes NADH dehydrogenase subunit genes ND4L and ND5. Mol Gen Genet 243:473–476

    Google Scholar 

  • Osinga K, Tabak HF (1982) Initiation of transcription of genes for mitochondrial ribosomal RNA in yeast: comparison of the nucleotide sequence around the 5′ ends of both genes reveals a homologous stretch of 17 nucleotides. Nucleic Acids Res 10:3617–3626

    Google Scholar 

  • Osinga KA, De Vries E, Van der Horst G, Tabak HF (1984) Processing of yeast mitochondrial messenger RNAs at a conserved dodecamer sequence. EMBO J 3:829–834

    Google Scholar 

  • Sekito T, Okamoto K, Suzuki K, Yoshida K (1993) Nucleotide sequences and secondary structures of four tRNA genes in mitochondrial DNA of Hansenula wingei yeast. Nucleic Acids Res 21:3589

    Google Scholar 

  • Trinkl H, Lang BF, Wolf K (1985) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. 7. Continuous gene for apocytochrome b in strain EF1 (CBS 356) and sequence variation in the region of intron insertion in strain ade 7–50h-. Mol Gen Genet 198:360–363

    Google Scholar 

  • Van den Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298:187–189

    Google Scholar 

  • Weber F, Dietrich A, Weil J-H, Marechal-Drouard L (1990) A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Res 18:5027–5030

    Google Scholar 

  • Wernette CM, Saldahna R, Perlman PS,Butow RA (1990) Purification of a site-specific endonuclease, I-Sce II, encoded intron 4α of the mitochondrial cox1 gene of Saccharomyces cerevisiae. J Biol Chem 265:18976–18982

    Google Scholar 

  • Yin S, Burke J, Chang DD, Browning KS, Heckman JE, Alzner-DeWeerd B, Potter MJ, RajBhandary UL (1982) Neurospora crassa mitochondrial tRNAs and rRNAs: Structure, gene organization, and DNA sequences. In: Slonimsky P, Borst P, Attardi G (eds) Mitochondrial genes, Cold Spring Harbor Laboratory. Cold Spring Harbor, New York, pp 361–373

    Google Scholar 

  • Zimmer M, Luckeman G, Lang BF, Wolf K (1984) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. 3. Gene mapping in strain EF1 (CBS 356) and analysis of hybrids between the strains EF1 and ade 7–50h-. Mol Gen Genet 196:473–481

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L.A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekito, T., Okamoto, K., Kitano, H. et al. The complete mitochondrial DNA sequence of Hansenula wingei reveals new characteristics of yeast mitochondria. Curr Genet 28, 39–53 (1995). https://doi.org/10.1007/BF00311880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311880

Key words

Navigation