Skip to main content
Log in

Fine structure and function of the digestive tract of Cyathura carinata (Krøyer) (Crustacea, Isopoda)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The entire gut of Cyathura carinata is lined by a cuticle indicating its completely ectodermal origin. By flattening of the epithelial folds and possibly also of reserve-folds of the plasma membrane the intestine is highly dilatable, an adaptation towards a rapid uptake of the food which is sucked in by means of specialized mouthparts, which pierce the body wall of its main prey, the polychaete Nereis diversicolor. Bundles of microtubules within the intestinal cells presumably represent cytoskeletal structures providing protection against mechanical stress. Spirally arranged muscle fibres, which form peculiar contact areas with the gut, can easily follow any dilatation. A few indications of the metabolic functions of the anterior gut epithelium have been found: Basally and apically located labyrinthine structures of the plasma membrane, apically located clear vesicles, positive reactions for lysosomal, mitochondrial and membraneous enzymes, a strikingly thin and loosely arranged cuticle through which food substances of low molecular weight may diffuse. The cells of the gut and also of the digestive caeca are interconnected by desmosomes, extensive pleated septate junctions, and gap junctions. In the pleon the gut is less dilatable and devoid of plasma membrane specializations. In this area tendon cells, particularly rich in microtubules, serve as attachment sites for the dilating muscles of the rectum. The digestive caeca synthetize and secrete digestive enzymes, mix food and enzymes in their lumen, resorb food molecules, store lipids and glycogen. In the glandular epithelium small cells, rich in rough ER, and a majority of large cells, rich in lipid droplets, occur which, however, are interconnected by a series of morphologically intermediate cells. All cells bear an apical brush border, form a basal labyrinth and contain high to medium activities of acid phosphatase, nonspecific esterases, ATPase, and succinic dehydrogenase. The ER-rich cells are far less frequent than in the omnivorous or herbivorous isopods (Sphaeroma, Idothea, Asellidae, Oniscoidea).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker PL, Gibson R (1977) Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropsidae). J Exp Mar Biol Ecol 26:297–324

    Google Scholar 

  • Becker GL, Chen CH, Greenawalt JW, Lehninger A (1974) Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. J Cell Biol 61:316–326

    Google Scholar 

  • Bouligand Y (1962) Les ultrastructures du muscle strié et de ses attaches au squelette chez les Cyclops (Crustacés copépodes). J Microscopie 1:377–394

    Google Scholar 

  • Clifford B, Witkus ER (1971) The fine structure of the hepatopancreas of the woodlouse, Oniscus asellus. J Morphol 135:335–350

    Google Scholar 

  • Donadey C (1966) Contribution à l'étude du rôle excréteur des caecums digestifs des Crustacés. Étude au microscopique électronique sur Sphaeroma serratum (Crustacea Isopoda). C R Acad Sci Paris 263:1401–1404

    Google Scholar 

  • Donadey C (1971) Ultrastructure du réseau neuro-musculaire peripherique des caecums digestifs des Crustacés Isopodes. C R Acad Sci Paris 272:2572–2574

    Google Scholar 

  • Donadey C, Cesarini JP (1970) Données ultrastructurales sur la fonction sécrétrice des caecums digestifs des crustacés isopodes. C R Séanc Soc Biol 164:597–600

    Google Scholar 

  • Fahrenbach WH (1967) The fine structure of fast and slow crustacean muscles. J Cell Biol 35:69–79

    Google Scholar 

  • Frenzel J (1884) Über die Mitteldarmdrüse der Crustaceen. Mitt Zool Sta Neapel 5:50–101

    Google Scholar 

  • Goodrich AI (1939) The origin and fate of the entoderm elements in the embryogeny of Porcellio laevis. J Morphol 64:401–429

    Google Scholar 

  • Gruner HE (1966) Krebstiere oder Crustacea V. Isopoda 2. In: Dahl M, Peus F (ed) Die Tierwelt Deutschlands. VEB G Fischer Verlag Jena, 380 pp

    Google Scholar 

  • Holdich DM, Ratcliffe NA (1970) A light and electron microscope study of the hindgut of the herbivorous isopod, Dynamene bidentata. Z. Zellforsch 111:209–227

    Google Scholar 

  • Holdich DM (1973) The midgut/hindgut controversy in isopods. Crustaceana 24:211–214

    Google Scholar 

  • Holdich DM, Mayes KR (1975) A fine-structural re-examination of the so-called ‘midgut’ of the Isopod Porcellio. Crustaceana 29:186–192

    Google Scholar 

  • Hryniewiecka-Szyfter Z, Tyczewska J (1979) Fine structure and localisation of alkaline phosphatase in the hindgut of Mesidotea entomon (Isopoda, Crustacea). Bull Soc Amis Sci Lett Poznan ser D Sci Biol O (19):57–64

    Google Scholar 

  • Ide M (1892) Le tube digestiv des Edriophthalmes. Cellule 8:99–204

    Google Scholar 

  • Jacobs W (1928) Untersuchungen über die Cytologie der Sekretbildung in der Mitteldarmdrüse von Astacus leptodactylus. Z Zellforsch 8:1–62

    Google Scholar 

  • Jones DA (1968) The functional morphology of the alimentary tract in Eurydice pulchra. J Zool London 156:363–376

    Google Scholar 

  • Jones DA, Babbage PC, King DE (1969) Studies on the digestion and the fine structure of digestive caecae in Eurydice pulchra (Crustacea, Isopoda). Mar Biol 2:311–320

    Google Scholar 

  • Komuro T, Yamamoto T (1968) Fine Structure of the Epithelium of the Gut in the Crayfish (Procambarus clarkii) with Special Reference to the Cytoplasmic Microtubules. Arch Histol Jap 30:17–32

    Google Scholar 

  • Lai-Fook J (1967) The Structure of Developing Muscle Insertions in Insects. J Morphol 123:503–528

    Google Scholar 

  • Loizzi RF (1971) Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Z Zellforsch 113:420–440

    Google Scholar 

  • Lojda Z, Gossrau R, Schiebler TH (1976) Enzym — histochemische Methoden. Springer, Berlin Heidelberg New York, 299 pp

    Google Scholar 

  • Monod T (1925) Les Gnathiidae. Mém Soc Sc Nat Maroc 13:1–667

    Google Scholar 

  • Moritz K, Storch V, Buchheim W (1973) Zur Feinstruktur der Mitteldarmanhänge von Peracarida (Mysidacea, Amphipoda, Isopoda). Cytobiol 8:39–54

    Google Scholar 

  • Murlin JR (1902) Absorption and Secretion in the Digestive System of Land Isopods. Proc Acad Nat Sci Philad 54:284–359

    Google Scholar 

  • Mykles DL (1979) Ultrastructure of Alimentary Epithelia of Lobsters, Homarus americanus and H. gammarus, and crab, Cancer magister. Zoomorphologie 92:201–215

    Google Scholar 

  • Nicholls AG (1931) Studies on Ligia oceanica. II. J mar biol Ass U K 17:675–707

    Google Scholar 

  • Noirot-Timothée C, Noirot C (1980) Septate and Scalariform Junctions in Arthropods. Int Rev Cytol 63:97–140

    Google Scholar 

  • Pearse AGE (1961) Histochemistry theoretical and applied. Churchill Ltd., London, 998 pp

    Google Scholar 

  • Scheloske HW (1976) Vergleichend-morphologische und funktionelle Untersuchungen am Magen von Asellus aquaticus. Zool Jb Anat 95:519–573

    Google Scholar 

  • Schlecht F (1979) Elektronenoptische Untersuchungen des Darmtraktes und der peritrophischen Membran von Cladoceren und Conchostracen (Phyllocarida, Crustacea). Zoomorphologie 92:161–182

    Google Scholar 

  • Schmitz EH, Schultz TW (1969) Digestive anatomy of terrestrial Isopoda Armadillidium vulgare and A. nasatum. Am Midl Natural 82:163–181

    Google Scholar 

  • Schönichen W (1899) Der Darmkanal der Onisciden und Aselliden. Zeitschr wiss Zool 65:143–178

    Google Scholar 

  • Schultz TW (1973) Digestive anatomy of Lirceus fontinalis Rafinesque (Crustacea Isopoda). Trans Amer micr Soc 92:13–25

    Google Scholar 

  • Schultz TW (1976) The Ultrastructure of the Hepatopancreatic Caeca of Gammarus minus (Crustacea Amphipoda). J Morphol 149:383–400

    Google Scholar 

  • Semenova LM (1970) Adaptive characters of the structure of alimentary system in some Isopoda, with reference to conditions of their life (In Russian with English summary). Russk Zool Zh 49:831–837

    Google Scholar 

  • Siewing R (1954) Morphologische Untersuchungen an Tanaidaceen und Lophogastriden. Z wiss Zool 157:333–426

    Google Scholar 

  • Smith DS (1972) Muscle. Academic Press, New York and London, 60 pp

    Google Scholar 

  • Smith JM, Nadakavukaren MJ, Hetzel HR (1975) Light and Electron Microscopy of the Hepatopancreas of the Isopod Asellus intermedius. Cell Tissue Res 163:403–410

    Google Scholar 

  • Smith WJ, Witkus ER, Grillo RS (1969) Structural adaptations for ion and water transport in the hindgut of the wood — louse Oniscus asellus. J Cell Biol 43:135–136

    Google Scholar 

  • Stainer JE, Woodhouse MA, Griffin RL (1968) The fine structure of the hepatopancreas of Carcinus maenas (L.) (Decapoda Brachyura). Crustaceana 14:56–66

    Google Scholar 

  • Steeves JR (1963) The effect of starvation on glycogen metabolism in the isopod Lirceus brachyurus (Harger). J exp Zool 154:21–37

    Google Scholar 

  • Storch V, Welsch U (1977) Elektronenmikroskopische und enzymhistochemische Untersuchungen der Mitteldarmdrüse der landlebenden Decapoden Coenobita rugosus und Ocypode ceratophthalma. Zool Jb Anat 97:25–39

    Google Scholar 

  • Storch V, Lehnert-Moritz K (1980) The Effect of Starvation on the Hepatopancreas of the Isopod Ligia oceanica. Zool Anz 204:137–146

    Google Scholar 

  • Talbot P, Clark WH, Lawrence AL (1972) Fine structure of the midgut epithelium in the developing brown shrimp, Penaeus aztecus. J Morphol 138:467–486

    Google Scholar 

  • Vernon GM, Herold L, Witkus ER (1974) Fine structure of the digestive tract epithelium in the terrestrial isopod, Armadillidium vulgare. J Morphol 144:337–360

    Google Scholar 

  • Wägele JW (1979) Die Homologie der Mundwerkzeuge von Cyathura carinata (Kröyer, 1847) (Crustacea, Isopoda, Anthuridea). Zool Anz 203:334–341

    Google Scholar 

  • Wägele JW (1981) Zur Phylogenie der Anthuridea (Crustacea, Isopoda). Mit Beiträgen zur Lebensweise, Morphologie, Anatomie und Taxonomie. Zoologica 132:in press

  • Walz R (1887) Über die Familie der Bopyriden. Arb Zool Inst Wien 4:1–76

    Google Scholar 

  • Witkus ER, Grillo R, Smith WJ (1969) Microtubule bundles in the hindgut epithelium of the woodlouse Onsicus asellus. J Ultrastr Res 29:182–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wägele, JW., Welsch, U. & Müller, W. Fine structure and function of the digestive tract of Cyathura carinata (Krøyer) (Crustacea, Isopoda). Zoomorphology 98, 69–88 (1981). https://doi.org/10.1007/BF00310321

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310321

Keywords

Navigation