Skip to main content
Log in

Sea Beam, SeaMARC II and ALVIN-based studies of faulting on the East Pacific Rise 9°20′ N–9°50′ N

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

A study of Sea Beam bathymetry and SeaMARC II side-scan sonar allows us to make quantitative measures of the contribution of faulting to the creation of abyssal hill topography on the East Pacific Rise (EPR) 9°15′ N–9°50′ N. We conclude that fault locations and throws can be confidently determined with just Sea Beam and SeaMARC II based on a number of in situ observations made from the ALVIN submersible. A compilation of 1026 fault scarp locations and scarp height measurements shows systematic variations both parallel and perpendicular to the ridge axis. Outward-facing fault scarps (facing away from the ridge axis), begin to develop within ∼2 km of the ridge and reach their final average height of ∼60 m at 5–7 km. Beyond these distances, outward-dipping faults appear to be locked, although there is some indication of continued lengthening of outward-facing fault scarps out to the edge of the survey area. Inward-facing fault scarps (facing toward the ridge axis), initiate ∼2 km off axis and increase in height and length out to the edge of our data at 30 km, where the average height of inward fault scarps is 60–70 m and the length is ∼30 km. Continued slip on inward faults at a greater distance off axis is probable, but based on fault lengths, ∼80% of the lengthening of inward fault scarps occurs within 30 km of the axis (>95% for outward faults). Along-strike propagation and linkage of these faults are common. Outward-dipping faults accommodate more apparent horizontal strain than inward ones within 10 km of the ridge. The net horizontal extension due to faulting at greater distances is estimated as 4.2–4.3%, and inward and outward faults contribute comparably. Both inward- and outward-facing fault scarps increase in height from north to south in our study area in the direction of decreasing inferred magma supply. Average fault spacing is ∼2 km for both inward-dipping and outward-dipping faults. The azimuths of fault scarps document the direction of ridge spreading, but they are sensitive to local changes in least compressive stress direction near discontinuities. Both the ridge trend and fault scarp azimuths show a clockwise change in trend of ∼3–5° from 9°50′ N to 9°15′ N approaching the 9° N overlapping spreading center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, R. T., 1995, The Tectonic and Volcanic Contributions to Abyssal Hill Topography: A Study on the East Pacific Rise 9°20′ N–9°50′ N, M.S. thesis, University of California, Santa Barbara, 83 pp.

  • BergmanE. A. and SolomonS. C., 1984, Source Mechanisms of Earthquakes Near Mid-Ocean Ridges from Body Waveform Inversion: Implications for the Early Evolution of Oceanic Lithosphere. J. Geophys. Res. 89, 11415–11441.

    Google Scholar 

  • BicknellJ. D., FoxP. J., SempereJ.-C. and MacdonaldK. C., 1987, Tectonics of a Fast Spreading Center: A Deep-Tow and Sea Beam Survey of the East Pacific Rise at 19°30′ S, Mar. Geophys. Res. 9, 25–45.

    Google Scholar 

  • BjarnasonI. T., CowieP., AndersM., SeeberL. and ScholzC. H., 1993, The 1912 Iceland Earthquake Rupture: Growth and Development of a Nascent Transform System, Bull. Seism. Soc. Am. 83, 416–435.

    Google Scholar 

  • Blackinton, J. G., Hussong, D. M. and Kosalos, J., 1983, First Results from a Combination of Side-Scan Sonar and Seafloor Mapping System (SeaMARC II), in Proceedings of the 15th Annual Offshore Technology Conference, Rep. OTC 4478, Offshore Technology Conference, TX, pp. 307–311.

  • CannJ. R., 1974, A Model for Oceanic Crustal Structure Developed, Geophys. J. Roy. Astr. Soc. 39, 169–187.

    Google Scholar 

  • CarbotteS. M. and MacdonaldK. C., 1990, Causes of Variation in Fault-Facing Direction on the Ocean Floor, Geology 18, 749–752.

    Google Scholar 

  • CarbotteS. and MacdonaldK. C., 1992, East Pacific Rise 8°–10°30′ N: Evolution of Ridge Segments and Discontinuities from SeaMARC II and Three-Dimensional Magnetic Studies, J. Geophys. Res. 97, 6959–6982.

    Google Scholar 

  • CarbotteS. M. and MacdonaldK. C., 1994a, The Axial Topographic High at Intermediate and Fast Spreading Ridges, Earth Planet. Sci. Lett. 128, 85–97.

    Google Scholar 

  • CarbotteS. M. and MacdonaldK. C., 1994b, Comparison of Seafloor Tectonic Fabric at Intermediate, Fast and Super Fast Spreading Ridges: Influence of Spreading Rate, Plate Motions, and Ridge Segmentation on Fault Patterns, J. Geophys. Res. 99, 13609–13631.

    Google Scholar 

  • CaressD. W., BurnettM. S. and OrcuttJ. A., 1992, Tomographic Image of the Axial Low-Velocity Zone at 12°50′ N on the East Pacific Rise, J. Geophys. Res. 97, 9243–9264.

    Google Scholar 

  • ChenY. and MorganW. J., 1990, Rift Valley/No Rift Valley Transition at Mid-Ocean Ridges, J. Geophys. Res. 95, 17571–17581.

    Google Scholar 

  • ChoukrouneP., FrancheteauJ. and HekinianR., 1984, Tectonics of the East Pacific Rise near 12°50′ N: A Submersible Study, Earth Planet. Sci. Lett. 68, 115–127.

    Google Scholar 

  • ChristesonG. L., PurdyG. M. and FryerG. J., 1994, Seismic Constraints on Shallow Crustal Emplacement Processes at the Fast Spreading East Pacific Rise, J. Geophys. Res. 99, 17957–17973.

    Google Scholar 

  • CochranJ. R., GoffJ. A., MalinvernoA., FornariD. J., KeeleyC. and WangX., 1993, Morphology of a ‘Superfast’ Mid-Ocean Ridge Crest and Flanks: The East Pacific Rise, 7°–9° S, Mar. Geophys. Res. 15, 65–75.

    Google Scholar 

  • CowieP. A. and ScholzC. H., 1992a, Physical Explanation for the Displacement-Length Relationship of Faults Using a Post-Yield Fracture Mechanics Model, J. Struct. Geol. 14, 1133–1148.

    Google Scholar 

  • CowieP. A. and ScholzC. H., 1992b, Displacement-Length Scaling Relationship for Faults: Data Synthesis and Discussion, J. Struct. Geol. 14, 1149–1156.

    Google Scholar 

  • CowieP. A., ScholzC. H., EdwardsM. and MalinvernoA., 1993, Fault Strain and Seismic Coupling on Mid-Ocean Ridges, J. Geophys. Res. 98, 17911–17920.

    Google Scholar 

  • CowieP. A., MalinvernoA., RyanW. B. F. and EdwardsM. H., 1994, Quantitative Fault Studies on the East Pacific Rise: A Comparison of Sonar Imaging Techniques, J. Geophys. Res. 99, 15205–15218.

    Google Scholar 

  • CoxS. J. D. and ScholzC. H., 1988, On the Formation and Growth of Faults: An Experimental Study, J. Struct. Geol. 10, 413–430.

    Google Scholar 

  • CYAMEX Scientific Team, 1981, First Manned Submersible Dives on the East Pacific Rise at 21° N (Project RITA): General Results, Mar. Geophys. Res. 4, 345–379.

    Google Scholar 

  • DawersN. H., AndersM. H. and ScholzC. H., 1993, Growth of Normal Faults: Displacement-Length Scaling, Geology 21, 1107–1110.

    Google Scholar 

  • DeMetsC., GordonR. G., ArgusD. F. and SteinS., 1990, Current Plate Motions, Geophys. J. Intl. 101, 425–478.

    Google Scholar 

  • DetrickR. S., BuhlP., VeraE., MutterJ., OrcuttJ., MadsenJ. and BrocherT., 1987, Multi-Channel Seismic Imaging of a Crustal Magma Chamber Along the East Pacific Rise, Nature 326, 35–41.

    Google Scholar 

  • DeweyJ. F. and KiddW. S. F., 1977, Geometry of Plate Accretion, Geol. Soc. Am. Bull. 88, 960–968.

    Google Scholar 

  • EdwardsM. E., FornariD. J., MalinvernoA., RyanW. B. F. and MadsenJ., 1991, The Regional Tectonic Fabric of the East Pacific Rise from 12°50′ N to 15°10′ N, J. Geophys. Res. 96, 7995–8017.

    Google Scholar 

  • Edwards, M. H., 1991, The Morphotectonic Fabric of the East Pacific Rise: Implications for Fault Generation and Crustal Accretion, Ph.D. thesis, Columbia University, Palisades.

  • EdwardsM., RyanW. B. F. and FornariD. J., 1992, A Tectono-Volcanic Model for Abyssal Hill Formation on the Intermediate-Fast Spreading East Pacific Rise, EOS, Trans. Am. Geophys. Union 73, 502.

    Google Scholar 

  • EfronB. and TibshiraniR., 1991, Statistical Data Analysis in the Computer Age, Science 253, 390–395.

    Google Scholar 

  • EinarssonP. and EirikssonJ., 1982, Earthquake Fractures in the Districts Land and Rangarvellir in the South Iceland Seismic Zone, Jokull 32, 113–124.

    Google Scholar 

  • FornariD. J., PerfitM. R., BatizaR. and EdwardsM. H., 1992, Submersible Transects Across the East Pacific Rise Crest and Upper Flanks at 9°31′–32′ N: 1. Observations of Seafloor Morphology and Evidence for Young Volcanism Off Axis, EOS 73, 525.

    Google Scholar 

  • ForslundT. and GudmundssonA., 1992. Structure of Tertiary and Pleistocene Normal Faults in Iceland, Tectonics 11, 57–68.

    Google Scholar 

  • FoxP. J., GrindlayN. R. and MacdonaldK. C., 1991, The Mid-Atlantic Ridge (31°–34°30′ S): Temporal and Spatial Variations of Accretionary Processes, Mar. Geophys. Res. 13, 1–20.

    Google Scholar 

  • GoffJ. A., 1991, A Global and Regional Analysis of Near-Ridge Abyssal Hill Morphology, J. Geophys. Res. 96, 21713–21737.

    Google Scholar 

  • GoffJ. A., JordanT. H., EdwardsM. H. and FornariD. J., 1991, Comparison of a Stochastic Seafloor Model with SeaMARC II Bathymetry and Sea Beam Data Near the East Pacific Rise 13°–15° N, J. Geophys. Res. 96, 3867–3886.

    Google Scholar 

  • GoffJ. A., MalinvernoA., FornariD. J. and CochranJ. R., 1993, Abyssal Hill Segmentation: Quantitative Analysis of the East Pacific Rise Flanks 7° S–9° S, J. Geophys. Res. 98, 13851–13862.

    Google Scholar 

  • GoldsteinS. J., PerfitM. R., BatizaR., FornariD. J. and MurrellM. T., 1994, Off-Axis Volcanism at the East Pacific Rise Detected by Uranium-Series Dating of Basalts, Nature 367, 157–159.

    Google Scholar 

  • GranierT., 1985, Origin, Damping, and Pattern of Development of Faults in Granite, Tectonics 4, 721–737.

    Google Scholar 

  • GudmundssonA., 1987a, Geometry, Formation and Development of Tectonic Fractures on the Reykjanes Peninsula, Southwest Iceland, Tectonophysics 139, 295–308.

    Google Scholar 

  • GudmundssonA., 1987b, Tectonics of the Thingvellir Fissure Swarm, SW Iceland, J. Struct. Geol. 9, 61–69.

    Google Scholar 

  • GudmundssonA. and BackstromK., 1991, Structure and Development of the Sveinagja Graben, Northeast Iceland, Tectonophysics 200, 111–125.

    Google Scholar 

  • GudmundssonA., 1992, Formation and Growth of Normal Faults at the Divergent Plate Boundary in Iceland, Terra Nova 4, 464–471.

    Google Scholar 

  • HardingA. J., OrcuttJ. A., KappusM. E., VeraE. E., MutterJ. C., BuhlP., DetrickR. S. and BrocherT. M., 1989, Structure of Young Oceanic Crust at 13°N on the East Pacific Rise from Expanding Spread Profiles, J. Geophys. Res. 94, 12163–12196.

    Google Scholar 

  • HardingA. J., KentG. M. and OrcuttJ. A., 1993, A Multichannel Seismic Investigation of Upper Crustal Structure at 9° N on the East Pacific Rise: Implications for Crustal Accretion, J. Geophys. Res. 98, 13925–13944.

    Google Scholar 

  • HarperG. D., 1985, Tectonics of a Slow-Spreading Mid-Ocean Ridges and Consequences of a Variable Depth to the Brittle/Ductile Transition, Tectonics 4, 395–410.

    Google Scholar 

  • HaymonR. M., FornariD. J., EdwardsM. H., CarbotteS., WrightD. and MacdonaldK. C., 1991, Hydrothermal Vent Distribution Along the East Pacific Rise Crest (9°09′–54′ N) and its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridges, Earth Planet. Sci. Lett. 104, 513–534.

    Google Scholar 

  • HaymonR. M. and others, 1993, Volcanic Eruption of the Mid-Ocean Ridge Along the East Pacific Rise Crest at 9°45′–52′ N: Direct Submersible Observations of Seafloor Phenomena Associated with an Eruption Event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101.

    Google Scholar 

  • HuangP. Y., SolomonS. C., BergmanE. A. and NabelekJ. L., 1986, Focal Depths and Mechanisms of Mid-Atlantic Ridge Earthquakes from Body Waveform Inversion, J. Geophys. Res. 91, 579–598.

    Google Scholar 

  • KarsonJ. A., ThompsonG., HumphrisS. E., EdmondJ. M., BryanW. B., BrownJ. R., WintersA. T., PockalnyR. A., CaseyJ. F., CampbellA. C., KlinkhammerG., PalmerM. R., KinzlerR. J. and SulanowskaM. M., 1987, Along-Axis Variation in Seafloor Spreading in the MARK Area, Nature 328, 681–685.

    Google Scholar 

  • KarsonJ. A. and RonaP. A., 1990, Block-Tilting, Transfer Faults and Structural Control of Magmatic and Hydrothermal Processes in the TAG Area, Mid-Atlantic Ridge 26° N, Geol Soc. Am. Bull. 102, 1635–1645.

    Google Scholar 

  • Kent, G., Harding, A. J. and Orcutt, J. A., 1993, Distribution of Magma Beneath the East Pacific Rise Between the Clipperton Transform and the 9°17′ N Deval from Forward Modeling of Common Depth Point Data, J. Geophys. Res. 13945–13969.

  • KentG. M., SwiftS. A., DetrickR. S., CollinsJ. A. and StephenR. A., 1996, Evidence for Active Normal Faulting on 5.9 Ma Old Crust Near Hole 504B on the Southern Flank of the Costa Rica Rift, Geology 24, 83–86.

    Google Scholar 

  • KleinrockM. C., HeyR. N. and ThebergeJr.A. E., 1992, Practical Geological Comparison of Some Seafloor Survey Instruments, Geophys. Res. Lett. 19, 1407–1410.

    Google Scholar 

  • KongL., DetrickR. S., FoxP. J., MayerL. A. and RyanW. B. F., 1988, The Morphology and Tectonics of the MARK Area from Sea Beam and SeaMARC I Observations, Mar. Geophys. Res. 10, 59–90.

    Google Scholar 

  • KongL. S., SolomonS. C. and PurdyG. M., 1992, Micro-earthquake Characteristics of a Mid-Ocean Ridge Along-Axis High, J. Geophys. Res. 97, 1659–1685.

    Google Scholar 

  • KuoB. Y. and ForsythD. W., 1988, Gravity Anomalies of the Ridge Transform Intersection System in the South Atlantic between 31 and 34.5° S: Upwelling Centers and Variations in Crustal Thickness, Mar. Geophys. Res. 10, 205–232.

    Google Scholar 

  • LaughtonA. S. and SearleR. C., 1979, Tectonic Processes on Slow Spreading Ridges, in TalwaniM., HarrisonC. G., and HayesD. E. (eds.), Deep Drilling Results in the Atlantic Ocean: Ocean Crust, Maurice Ewing Series 3, American Geophysical Union, Washington, D.C., pp. 15–32.

    Google Scholar 

  • LinJ., PurdyG. M., SchoutenH., SempereJ.-C. and ZervasC., 1990, Evidence from Gravity Data for Focused Magmatic Accretion Along the Mid-Atlantic Ridge, Nature 344, 62–632.

    Google Scholar 

  • LonsdaleP., 1977, Structural Geomorphology of a Fast-Spreading Rise Crest: The East Pacific Rise Near 3°25′ S, Mar. Geophys. Res. 3, 251–293.

    Google Scholar 

  • LonsdaleP. and SpiessF. N., 1980, Deep-Tow Observations at the East Pacific Rise, 8°45′ N, and Some Interpretations, in RosendahlB. R. and HekinianR. (eds.), Init. Repts. DSDP, Washington, D.C.: US Government Printing Office, vol. 54, pp. 43–62.

    Google Scholar 

  • MacarioA., HaxbyW. F., GoffJ. A., RyanW. B. F., CandeS. C. and RaymondC. A., 1994, Flow Line Variations in Abyssal Hill Morphology for the Pacific-Antarctic Ridge at 65° S, J. Geophys. Res. 99, 17921–17934.

    Google Scholar 

  • MacdonaldK. C. and LuyendykB. P., 1977, Deep-Tow Studies of the Structure of the Mid-Atlantic Ridge Crest Near Lat 37° N, Geol. Soc. America Bull. 88, 621–636.

    Google Scholar 

  • MacdonaldK. C., 1982, Mid-Ocean Ridges: Fine Scale Tectonic, Volcanic and Hydrothermal Processes within the Plate Boundary Zone, Ann. Res. Earth Planet. Sci. 10, 155–190.

    Google Scholar 

  • MacdonaldK. C., MillerS. P., LuyendykB. P., AtwaterT. M. and ShureL., 1983, Investigation of a Vine-Matthews Magnetic Lineation from a Submersible: The Source and Character of Marine Magnetic Anomalies, J. Geophys. Res. 88, 3403–3418.

    Google Scholar 

  • MacdonaldK., SempereJ.-C. and FoxP. J., 1984, East Pacific Rise from Siqueiros to Orozco Fracture Zones: Along-Strike Continuity of Axial Nenvolcanic Zone and Structure and Evolution of Overlapping Spreading Centers, J. Geophys. Res. 89, 6049–6069.

    Google Scholar 

  • MacdonaldK. C. and LuyendykB. P., 1985, Investigation of Faulting and Abyssal Hill Formation on the Flanks of the East Pacific Rise (21° N) using ALVIN, Mar. Geophys. Res. 7, 515–535.

    Google Scholar 

  • MacdonaldK. C., FoxP. J., PerramL. J., EisenM. F., HaymonR. M., MillerS. P., CarbotteS. M., CormierM.-H. and ShotA. N., 1988, A New View of the Mid-Ocean Ridge from the Behaviour of Ridge-Axis Discontinuities, Nature 335, 6187, 217–225.

    Google Scholar 

  • MacdonaldK. C., HaymonR. and ShorA., 1989, A 220 km2 Recently Erupted Lava Field on the East Pacific Rise Near Lat 8° S, Geology 17, 212–216.

    Google Scholar 

  • MacdonaldK. C., ScheirerD. S. and CarbotteS. M., 1991, Mid-Ocean Ridges: Discontinuities, Segments and Giant Cracks, Science 253, 986–994.

    Google Scholar 

  • MacdonaldK. C., FoxP. J., CarbotteS., EisenM., MillerS., PerramL., ScheirerD., TigheS. and WeilandC., 1992, The East Pacific Rise and its Flanks, 8°–18°N: History of Segmentation, Propagation and Spreading Direction Based on SeaMARC II and Sea Beam Studies, Mar. Geophys. Res. 14, 299–344.

    Google Scholar 

  • MacdonaldK. C., FoxP. J., AlexanderR. T., PockalnyR. and GenteP., 1996, Volcanic Growth Faults and the Origin of Pacific Abyssal Hills, Nature 380, 125–129.

    Google Scholar 

  • MarrettR. and AllmendingerR. W., 1991, Estimates of Strain Due to Brittle Faulting: Sampling of Fault Populations, J. Struct. Geol. 13, 735–737.

    Google Scholar 

  • MuraokaH. and KamataH., 1983, Displacement Distribution Along Minor Fault Traces, J. Struct. Geol. 5, 483–495.

    Google Scholar 

  • ParmentierE. M. and Phipps MorganJ., 1990, Spreading Rate Dependence of Three-Dimensional Structure in Oceanic Spreading Centers, Nature 348, 325–328.

    Google Scholar 

  • PeacockD. C. P. and SandersonD. J., 1991, Displacements, Segment Linkage and Relay Ramps in Normal Fault Zones, J. Struct. Geol. 13, 721–733.

    Google Scholar 

  • PerfitM. R., SmithM. C., FornariD. J., BatizaR. and EdwardsM. H., 1992, Submersible Transects Across the East Pacific Rise Crest and Upper Flanks at 9°31′–32′ N: 2. Small-Scale Spatial Variations in Lava Geochemistry and Implications for Temporal Variability, EOS, Trans. Am. Geophys. Union 73, 525.

    Google Scholar 

  • PerfitM. R., FornariD. J., SmithM. C., BenderJ. F., LangmuirC. H. and HaymonR. M., 1994, Small-Scale Spatial and Temporal Variations in Mid-Ocean Ridge Crest Magmatic Processes, Geology 22, 375–379.

    Google Scholar 

  • PerramL. J. and MacdonaldK. C., 1990, A One-Million-Year History of the 11°45′ N East Pacific Rise Discontinuity, J. Geophys. Res. 95, 21363–21381.

    Google Scholar 

  • Phipps MorganJ. and ChenY. J., 1993, The Genesis of Oceanic Crust: Magma Injection, Hydrothermal Circulation and Crustal Flow, J. Geophys. Res. 98, 6283–6297.

    Google Scholar 

  • PollardD. D., SegallP. and DelaneyP. T., 1982, Formation and Interpretation of Dilatant Echelon Cracks, Geol. Soc. Am. Bull. 93, 1291–1303.

    Google Scholar 

  • PollardD. D. and AydinA., 1984, Propagation and Linkage of Oceanic Ridge segments, J. Geophys. Res. 89, 10,017–10,028.

    Google Scholar 

  • RenardV. and AllenouJ. P., 1979, Sea Beam Multibeam Echo Sounding on “Jean Charcot”, Description, Evaluation and First Results, Int. Hydrogr. Rev. LV(1), 35–67.

    Google Scholar 

  • ScheirerD. S. and MacdonaldK. C., 1993, Variation in Cross-Sectional Area of the Axial Ridge Along the East Pacific Rise: Evidence for the Magmatic Budget of a Fast-Spreading Center, J. Geophys. Res. 98, 7871–7885.

    Google Scholar 

  • ScholzC. H., 1989, Mechanics of Faulting, Ann. Rev. Earth Planet. Sci. 17, 309–334.

    Google Scholar 

  • ScholzC. H., DawersN. H., YuJ. and AndersM. H., 1993, Fault Growth and Fault Scaling Laws: Preliminary Results, J. Geophys. Res. 98, 21951–21961.

    Google Scholar 

  • SchoutenH., KlitgordK. D. and WhiteheadJ. A., 1985, Segmentation of Mid-Ocean Ridges, Nature 317, 225–229.

    Google Scholar 

  • SearleR., 1984, GLORIA Survey of the East Pacific Rise Near 3.5° S: Tectonic and Volcanic Characteristics of a Fast Spreading Mid-Ocean Ridge, Tectonophysics 101, 319–344.

    Google Scholar 

  • SempereJ.-C., MacdonaldK. C., MillerS. P. and ShureL., 1987, Detailed Study of the Bruhnes/Matuyama Reversal Boundary on the East Pacific Rise at 19°30′ S: Implications for Crustal Emplacement Processes at an Ultra Fast Spreading Center, Mar. Geophys. Res. 9, 1–23.

    Google Scholar 

  • SempereJ.-C. and MacdonaldK. C., 1986a, Overlapping Spreading Centers: Implications from Crack Growth Simulation by the Displacement Discontinuity Method, Tectonics 5, 151–163.

    Google Scholar 

  • SempereJ.-C. and MacdonaldK. C., 1986b, Deep-Tow Studies of the Overlapping Spreading Centers at 9°03′ N on the East Pacific Rise, Tectonics 5, 881–900.

    Google Scholar 

  • ShawP. R., 1992, Ridge Segmentation, Faulting and Crustal Thickness in the Atlantic Ocean, Nature 358, 490–493.

    Google Scholar 

  • ShawP. R. and LinJ., 1993, Causes and Consequences of Variations in Faulting Style at the Mid-Atlantic Ridge, J. Geophys. Res. 98, 21839–21851.

    Google Scholar 

  • ShawP. R. and SmithD. K., 1990, Robust Description of Statistically Heterogeneous Seafloor Topography Through its Slope Distribution, J. Geophys. Res. 95, 8705–8722.

    Google Scholar 

  • SintonJ. M. and DetrickR. S., 1992, Mid-Ocean Ridge Magma Chambers, J. Geophys. Res. 97, 197–216.

    Google Scholar 

  • ToomeyD. R., PurdyG. M., SolomonS. C. and WilcockW. S. D., 1990, The Three-Dimensional Velocity Structure of the East Pacific Rise Near Latitude 9°30′ N, Nature 347, 639–645.

    Google Scholar 

  • ToomeyD. R., SolomonS. C. and PurdyG. M., 1994, Tomographic Imaging of the Shallow Crustal Structure of the East Pacific Rise at 9°30′ N, J. Geophys. Res. 99, 24135–24157.

    Google Scholar 

  • VeraE. E., MutterJ. C., BuhlP., OrcuttJ. A., HardingA. J., KappusM. E., DetrickR. S. and BrocherT. M., 1990, The Structure of 0- to 0.2-m.y.-old Oceanic Crust at 9° N on the East Pacific Rise from Expanded Spread Profiles, J. Geophys. Res. 95, 15529–15556.

    Google Scholar 

  • VeraE. E. and DieboldJ. B., 1994, Seismic Imaging of Oceanic Layer 2A between 9°30′ N and 10° N on the East Pacific Rise from Two-Ship Wide-Aperture Profiles, J. Geophys. Res. 99, 3031–3041.

    Google Scholar 

  • WalshJ. J. and WattersonJ., 1988, Analysis of the Relationship between Displacements and Dimensions of Faults, J. Struct. Geol. 10, 239–247.

    Google Scholar 

  • WalshJ. J. and WattersonJ., 1991, Geometric and Kinematic Coherence and Scale Effects in Normal Faults Systems, The Geometry of Normal Faults, Geological Society Special Publications 56, 193–203.

    Google Scholar 

  • WiensD. A. and SteinS., 1984, Intraplate Seismicity and Stresses in Young Oceanic Lithosphere, J. Geophys. Res. 89, 11442–11464.

    Google Scholar 

  • WilcockW. S. D., PurdyG. M., SolomonS. C., DuBoisD. L. and ToomeyD. R., 1992, Microearthquakes On and Near the East Pacific Rise, 9°–10° N, Geophys. Res. Lett. 19, 2131–2134.

    Google Scholar 

  • WilcockW. S. D., ToomeyD. R., PurdyG. M. and SolomonS. C., 1993, The Renavigation of Sea Beam Bathymetric Data between 9° N and 10° N on the East Pacific Rise, Mar. Geophys. Res. 15, 1–12.

    Google Scholar 

  • WilsonD. S., ClagueD. A., SleepN. H. and MortonJ. L., 1988, Implications of Magma convection for the Size and Temperature of Magma Chambers at Fast Spreading Ridges, J. Geophys. Res. 93, 11974–11984.

    Google Scholar 

  • WrightD. J., HaymonR. M. and MacdonaldK. C., 1995, Breaking New Ground: Estimates of Crack Depth Along the Axial Zone of the East Pacific Rise (9°12′–54′ N), Earth Planet. Sci. Lett. 134, 441–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, R.T., Macdonald, K.C. Sea Beam, SeaMARC II and ALVIN-based studies of faulting on the East Pacific Rise 9°20′ N–9°50′ N. Mar Geophys Res 18, 557–587 (1996). https://doi.org/10.1007/BF00310069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310069

Key words

Navigation