Skip to main content
Log in

A kinematic model of ridge-transform geometry evolution

  • Part III
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Spreading ridge-transform geometries will remain stable so long as accretion is symmetric. Asymmetric accretion, however, will cause lengthening or shortening of transforms and, in extreme cases, may result in zero-offset transforms (ZOTs) and very-long-offset transforms (VLOTs) such as the Ninetyeast and Chagos transforms. We use a simple kinematic model to examine the effects of various parameters on the evolution of zero-offset transforms and very-long-offset transforms. Starting with the transform length spectrum found along the Mid-Atlantic Ridge distributed in a randomly determined ridge-transform configuration, we allow for asymmetric accretion along ridge segments, assuming that individual ridge segments act independently. We analyze the effects of initial configuration, degree of asymmetry, and degree of bias in asymmetry on the generation of very-long-offset and zero-offset transforms. Finally, we examine the effect of these parameters on the possible steady-state nature of the transform length spectra. This model predicts that zero-offset transforms can be generated with a minimum of asymmetry, and that bias in asymmetry and initial ridge-transform-ridge configuration have no effect on generation of ZOTs. Similarly, random variations in spreading asymmetry have difficulty generating significant increases in transform length, so VLOTs may be manifestations of dynamic processes. Of the parameters tested, only lack of ‘memory’ of zero-offset transforms has any effect on transform length distribution, and therefore, the transform length spectrum remains steady-state if ZOTs have some degree of memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbbottD., 1986, A Statistical Correlation between Ridge Crest Offsets and Spreading Rate, Geophys. Res. Letters 13, 157–160.

    Google Scholar 

  • ActonG. D., SteinS., and EngelnJ. F., 1988, Formation of Curved Seafloor Fabric by Changes in Rift Propagation Velocity and Spreading Rate: Application to the 95.5° W Galapagos Propagator, J. Geophys. Res. 93, 11845–11861.

    Google Scholar 

  • BatizaR. and MargolisS. H., 1986, Small Non-Overlapping Offsets of the East Pacific Rise, Nature 320, 439–441.

    Google Scholar 

  • BrozenaJ. M., 1986, Temporal and Spatial Variability of Seafloor Spreading Processes in the Northern South Atlantic, J. Geophys. Res. 91, 497–510.

    Google Scholar 

  • DicksonG. L., PitmanW. C.III, and HeiritzlerJ. R., 1968, Magnetic Anomalies in the South Atlantic and Ocean Floor Spreading, J. Geophys. Res. 73, 2087–2100.

    Google Scholar 

  • DieterichJ. H., 1984, Earthquake Mechanisms and Modeling, Ann. Rev. of Earth and Plan. Sciences 2, 275–301.

    Google Scholar 

  • EngelnJ. F. and SteinS., 1984, Tectonics of the Easter Plate, Earth Planet. Sci. Letters 68, 259–270.

    Google Scholar 

  • EngelnJ. F., SteinS., WernerJ., and GordonR., 1988, Microplate and Shear Zone Models for Oceanic Spreading Center Reorganization, J. Geophys. Res. 93, 2839–2856.

    Google Scholar 

  • FisherR. L., SclaterJ. G., and McKenzieD. P., 1971, Evolution of the Central Indian Ridge, Western Indian Ocean, Geol. Soc. Am. Bull. 82, 553–562.

    Google Scholar 

  • FoxP. J. and GalloD. G., 1984, A Tectonic Model for Ridge-Transform-Ridge Plate Boundaries: Implications for the Structure of Oceanic Lithosphere, Technophysics 104, 205–242.

    Google Scholar 

  • HerronE. M., 1972, Sea-Floor Spreading and the Cenozoic History of the East-Central Pacific, Geol. Soc. Am. Bull. 83, 1671–1691.

    Google Scholar 

  • HeyR., 1977, A New Class of ‘pseudofaults’ and their Bearing on Plate Tectonics: A Propagating Rift Model, Earth Planet. Sci. Letters 37, 321–325.

    Google Scholar 

  • HeyR. N. and WilsonD. S., 1982, Propagating Rift Explanation for the Tectonic Evolution of the Northeast Pacific-the Pseudomovie, Earth Planet. Sci. Letters 58, 167–188.

    Google Scholar 

  • HeyR., DuennebierF. K., and MorganW. J., 1980, Propagating Rifts on Mid-Ocean Ridges, J. Geophys. Res. 85, 3647–3658.

    Google Scholar 

  • HeyR. N., KleinrockM. C., MillerS. P., AtwaterT. M., and SearleR. C., 1986, Sea Beam/Deep-Tow Investigation of an Active Oceanic Propagating Rift System, Galapagos 95.5° W, J. Geophys. Res. 91, 3369–3393.

    Google Scholar 

  • JohnsonG. L., SouthallJ. R., YoungP. W. and VogtP. R., 1972, Origin and Structure of the Iceland Plateau and Kolbeinsey Ridge, J. Geophys. Res. 77, 5688–5696.

    Google Scholar 

  • JohnsonH. P., KarstenJ. L., DelaneyJ. R., DavisE. E., CurrieR. G., and ChaseR. L., 1983, A Detailed Study of the Cobb Offset of the Juan de Fuca Ridge: Evolution of a Propagating Rift, J. Geophys. Res. 88, 2297–2315.

    Google Scholar 

  • LangmuirC. H., BenderJ. F., and BatizaR., 1986, Petrologic and Tectonic Segmentation of the East Pacific Rise 5°30′–14°30′ N, Nature 322, 422–429.

    Google Scholar 

  • MacdonaldK. C., 1977, Near Bottom Magnetic Anomalies, Asymmetric Spreading, Oblique Spreading and Tectonics of the Mid-Atlantic Ridge near Lat 37° N, Geol. Soc. Am. Bull. 88 541–555.

    Google Scholar 

  • MacdonaldK. C. and LuyendykB. P., 1977, Deep-Tow Studies of the Structure of the Mid-Atlantic Ridge Crest near Lat 37° N, Geol. Soc. Am. Bull 88, 621–636.

    Google Scholar 

  • MammerickxJ., HerronE., and DormanL., 1980, Evidence for Two Fossil Spreading Ridges in the Southeast Pacific, Geol. Soc. Am Bull. 91, 263–271.

    Google Scholar 

  • MenardH. W., 1978, Fragmentation of the Farallon Plate by Pivoting Subduction, J. Geol. 86, 99–110.

    Google Scholar 

  • MenardH. W., 1984, Evolution of Ridges by Asymmetrical Spreading, Geology, 12, 177–180.

    Google Scholar 

  • MenardH. W., ChaseT. E., and SmithS. M., 1964, Galapagos Rise in the Southeast Pacific, Deep-Sea Res. 11, 233–244.

    Google Scholar 

  • MillerS. P. and HeyR. N., 1986, Three-Dimensional Magnetic Modeling of a Propagating Rift, Galapagos 95°30′ W, J. Geophys. Res. 91, 3395–3406.

    Google Scholar 

  • PeirceJ. W., 1978, The Northward Motion of India since the Late Cretaceous, Geophys. J.R. Astron. Soc. 52, 277–311.

    Google Scholar 

  • ReaD. K. and DixonJ. M., 1983, Late Cretaceous and Paleogene Tectonic Evolution of the North Pacific Ocean, Earth Planet. Sci. Letters 65, 145–166.

    Google Scholar 

  • SandwellD. T., 1986, Thermal Stress and the Spacings of Transform Faults, J. Geophys. Res. 91, 6405–6418.

    Google Scholar 

  • SchoutenH. and KlitgordK. D., 1982, The Memory of the Accreting Plate Boundary and the Continuity of Fracture Zones, Earth Planet. Sci. Letters 59, 255–266.

    Google Scholar 

  • SchoutenH. and WhiteR. S., 1980, Zero-Offset Fracture Zones, Geology 8, 175–179.

    Google Scholar 

  • SchoutenH., KlitgordK. D., and WhiteheadJ. A., 1985, Segmentation of Mid-Ocean Ridges, Nature 317, 225–229.

    Google Scholar 

  • SclaterJ. G. and FisherR. L., 1974, The Evolution of the East Central Indian Ocean, with Emphasis on the Tectonic Setting of the Ninetyeast Ridge, Geol. Soc. Am. Bull. 85, 683–702.

    Google Scholar 

  • SearleR. C. and HeyR. N., 1983, Gloria Observations of the Propagating Rift at 95.5° W on the Cocos-Nazca Spreading Center, J. Geophys. Res. 88, 6433–6448.

    Google Scholar 

  • SempereJ.-C. and MacdonaldK. C., 1966, Deep-Tow Studies of the Overlapping Spreading Centers at 9°03′ N on the East Pacific Rise, Tectonics 5, 881–900.

    Google Scholar 

  • ShihJ. and MolnarP., 1975, Analysis and Implications of the Sequence of Ridge Jumps that Eliminated the Surveyor Transform Fault, J. Geophys. Res. 80, 4815–4822.

    Google Scholar 

  • SleepN. H. and RosendahlB. R., 1979, Topography and Tectonics of Mid-Oceanic Ridge Axes, J. Geophys. Res. 84, 6831–6839.

    Google Scholar 

  • SteinS., MeloshH. J., and MinsterJ. B., 1977, Ridge Migration and Asymmetric Sea-Floor Spreading, Earth Planet. Sci. Letters 36, 51–62.

    Google Scholar 

  • TamakiK. and LarsonR. L., 1988, The Mesozoic Tectonic History of the Magellan Microplate in the Western Central Pacific, J. Geophys. Res. 93, 2857–2874.

    Google Scholar 

  • VogtP. R., KovacsL. C., BerneroC., and SrivastavaS. P., 1982, Asymmetric Geophysical Signatures in the Greenland-Norwegian and Southern Labrador Seas and the Eurasia Basin, Tectonophysics 89, 95–160.

    Google Scholar 

  • WeisselJ. K. and HayesD. E., 1971, Asymmetric Seafloor Spreading South of Australia, Nature 231, 518–521.

    Google Scholar 

  • WeisselJ. K. and HayesD. E., 1974, The Australian-Antarctic Discordance: New Results and Implications, J. Geophys. Res. 79, 2579–2587.

    Google Scholar 

  • WilsonD. S., HeyR. N., and NishimuraC., 1984, Propagation as a Mechanism of Reorientation of the Juan de Fuca Ridge, J. Geophys. Res. 89, 9215–9225.

    Google Scholar 

  • WilsonJ. T., 1965, A New Class of Faults and their Bearing on Continental Drift, Nature 207, 343–347.

    Google Scholar 

  • WintererE. L., 1976, Anomalies in the Tectonics Evolution of the Pacific, in The Geophysics of the Pacific Ocean Basin and its Margin, 19, edited by G. H.Sutton et al., pp. 269–280, AGU, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoddard, P.R., Stein, S. A kinematic model of ridge-transform geometry evolution. Mar Geophys Res 10, 181–190 (1988). https://doi.org/10.1007/BF00310063

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310063

Key words

Navigation