Skip to main content
Log in

Structure of the rubisco operon from the multicellular red alga Antithamnion spec.

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

In the multicellular red alga Antithamnion spec. both rubisco genes (rbcL and rbcS) are encoded on the plastid DNA (ptDNA). Both genes are separated by a short A/T-rich spacer of 100 bp and are cotranscribed into an mRNA of approximately 2.7 kb. These findings are in extensive agreement with those obtained from two unicellular red algae (Porphyridium aerugineum and Cyanidium caldarium). The large subunit (LSU) of rubisco shows an amino acid homology of 82–87% with the LSUs from the two unicellular red algae and only about 55% to LSUs from green algae, higher plants and two cyanobacteria. The small subunit (SSU) of rubisco is more similar to those from the unicellular red algae and two algae which are members of the Chromophyta (about 60% homology) than to cyanobacterial and higher plant proteins (27–36% homology). These data indicate that rhodoplasts originated independently from the chloroplast line. The plastids of chromophytes and rhodophytes appear to be closely related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich J, Cherney B, Palmer J (1986) Nucleic Acids Res 14:9535

    Google Scholar 

  • Allen MB (1959) Arch Microbiol 32:270–277

    Google Scholar 

  • Boczar BA, Delaney TP, Cattolico RA (1989) Proc Natl Acad Sci USA 86:4996–4999

    Google Scholar 

  • Cavalier-Smith T (1987) Ann New York Acad Sci 503:17–54

    Google Scholar 

  • Chan RL, Keller M, Canaday J, Weil J-H, Imbault P (1990) EMBO J 9:333–338

    Google Scholar 

  • Curtis SE, Haselkorn R (1983) Proc Natl Acad Sci USA 80:1835–1839

    Google Scholar 

  • Davis LC, Dibner MD, Battey JF (1986) Basic methods in molecular biology. Elsevier, Amsterdam

    Google Scholar 

  • Douglas SE, Durnford DG (1989) Plant Mol Biol 13:13–20

    Google Scholar 

  • Dron M, Rahire M, Rochaix J-D (1982) J Mol Biol 162:775–793

    Google Scholar 

  • Gibbs SP (1981) Ann New York Acad Sci 361:193–207

    Google Scholar 

  • Gingrich JC, Hallick RB (1985) J Biol Chem 260:30, 16162–16168

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) J Bacteriol 170:3548–3592

    Google Scholar 

  • Goldschmidt-Clermont M, Rahire M (1986) J Mol Biol 191:421–432

    Google Scholar 

  • Higgins DG, Sharp PM (1988) Gene 73:237–244

    Google Scholar 

  • Hwang S-H, Tabita FR (1989) Plant Mol Biol 13:69–79

    Google Scholar 

  • Kröger M, Kröger-Block A (1984) Nucleic Acids Res 12:113–123

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W. H. Freeman, San Francisco

    Google Scholar 

  • Matsuoka M, Kano-Murakami Y, Tanaka Y, Ozeki Y, Yamamoto N (1987) J Biochem 102:673–676

    Google Scholar 

  • Mazur BJ, Chui CF (1985) Nucleic Acids Res 13:2373–2386

    Google Scholar 

  • Morden CW, Golden SS (1989) Nature 337:382–385

    Google Scholar 

  • Nierzwicki-Bauer SA, Curtis SE, Haselkorn R (1984) Proc Natl Acad Sci USA 81:5961–5965

    Google Scholar 

  • Reith M, Cattolico RA (1986) Proc Natl Acad Sci USA 83:8599–8603

    Google Scholar 

  • Shinozaki K, Sugiura M (1982) Gene 20:91–102

    Google Scholar 

  • Shinozaki K, Sugiura M (1983) Nucleic Acids Res 11:6957–6964

    Google Scholar 

  • Shinozaki K, Yamada C, Takahata N, Sugiura M (1983) Proc Natl Acad Sci USA 80:4050–4054

    Google Scholar 

  • Starnes SM, Lambert DH, Maxwell ES, Stevens Jr SE, Porter RD, Shively JM (1985) FEMS Microbiol Lett 28:165–169

    Google Scholar 

  • Steinmüller K, Kaling M, Zetsche K (1983) Planta 159:698–702

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) Nature 337:380–382

    Google Scholar 

  • Valentin K, Zetsche K (1989) Curr Genet 16:203–209

    Google Scholar 

  • Valentin K, Zetsche K (1990a) Mol Gen Genet 222:425–430

    Google Scholar 

  • Valentin K, Zetsche K (1990 b) Plant Mol Biol (in press)

  • Valentin K, Zetsche K (1990 c) Curr Genet (in press)

  • van den Eynde H, De Baere R, De Roek E, Van de Peer Y, Vandenberghe A, Willckens P, De Wachter R (1988) J Mol Evol 27:126–132

    Google Scholar 

  • Walker JM (1984) Methods in molecular biology, vol. 2: Nucleic acids. Humana Press, Clifton, New Jersey

    Google Scholar 

  • Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) Nucleic Acids Res 9:3251–3269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Kössel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostrzewa, M., Valentin, K., Maid, U. et al. Structure of the rubisco operon from the multicellular red alga Antithamnion spec. . Curr Genet 18, 465–469 (1990). https://doi.org/10.1007/BF00309918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309918

Key words

Navigation