Skip to main content
Log in

Two substitutions at the same position in the mitochondrial cytochrome b gene of S. cerevisiae induce a mitochondrial myxothiazol resistance and impair the respiratory growth of the mutated strains abbeit maintaining a good electron transfer activity

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Two cytochrome b respiratory—deficient mutants were sequenced and their DNA base change identified, leading to the replacement of glycine (G137 by valine or glutamicacid. No variation in their cytochrome b content with regard to cytochrome oxidase and cytochrome (c+c1) was found to have occurred. Their cellular respiratory activity with various substrates was partly conserved and was totally inhibited by antimycin A. Their ubiquinol (QH2)-cytochrome c reductase/mole cytochrome b activity decreased by about 50%. Paradoxically their growth on respiratory substrate was abolished. Both mutants retained a high-affinity binding site for antimycin A, and exhibited a myxothiazol—resistance at the mitochondrial level. It seems likely that the mutated position (137), which belongs to the ubiquinol oxidizing domain of the bc1 complex, interferes, directly or indirectly, with the respiratory growth capacity of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berden JA, Slater EC (1972) Biochim Biophys Acta 256:199–215

    Google Scholar 

  • Brasseur R (1988) J Biol Chem 263:12564–12570

    Google Scholar 

  • Chevillotte-Brivet P, Meunier-Lemesle D (1980) Eur J Biochem 111:161–169

    Google Scholar 

  • Chevillotte-Brivet P, Meunier-Lemesle D, Forget N, Pajot P (1983) Eur J Biochem 129:653–661

    Google Scholar 

  • Chevillotte-Brivet P, Salou G, Forget N, Meunier-Lemesle D (1987a) Biochimie 69:25–36

    Google Scholar 

  • Chevillotte-Brivet P, Salou G, Meunier-Lemesle D (1987 b) Current Genet 12:111–117

    Google Scholar 

  • Crofts A, Robinson H, Andrews K, Van Doren S, Berry E (1987) In: Papa S, Chance B, Ernster L (eds) Cytochrome systems, pp 617–624

  • di Rago J-P, Colson A-M (1988) J Biol Chem 263:12564–12570

    Google Scholar 

  • di Rago J-P, Coppée J-Y, Colson A-M (1989) J Biol Chem 264:14543–14548

    Google Scholar 

  • di Rago J-P, Netter P, Slonimski PP (1990a) J Biol Chem 265:3332–3339

    Google Scholar 

  • di Rago J-P, Netter P, Slonimski PP (1990 b) J Biol Chem (in press)

  • Haid A, Schweyen RJ, Belmmann M, Kaudewitz F, Solioz M, Schatz G (1979) Eur J Biochem 94:451–464

    Google Scholar 

  • Hauska G, Hurt E, Gabellini N, Lockau W (1983) Biochim Biophys Acta 726:97–133

    Google Scholar 

  • Hauska G, Nitshke W, Herrmann RG (1988) J Bioenerg Biomembr 20:211–217

    Google Scholar 

  • Jacq C, Lazowska J, Slonimski PP (1980) In: Kroon AM, Saccone C (eds) The organisation and expression of the mitochondrial genome. North-Holland, Amsterdam, pp 139–152

    Google Scholar 

  • Kotylak Z, Slonimski PP (1977) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977, Proc Collq Genet, Biogenesis of mitochondria. de Gruyter, Berlin, pp 162–172

    Google Scholar 

  • Lowry OM, Rosebrought NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • Meunier-Lemesle D, Chevillotte-Brivet P, Pajot P (1980) Eur J Biochem 111:151–160

    Google Scholar 

  • Mitchell P (1976) J Theor Biol 62:327–367

    Google Scholar 

  • Rao JK, Argos P (1986) Biochim Biophys Acta 869:197–205

    Google Scholar 

  • Rich P (1984) Biochim Biophys Acta 768:53–79

    Google Scholar 

  • von Jagow G, Ljungdahl PO, Graf PO, Onhishi T, Trumpower BL (1983) J Biol Chem 259:6318–6326

    Google Scholar 

  • Wikström M, Krab K (1986) J Bioenerg Biomembr 18:181–193

    Google Scholar 

  • Yang X, Trumpower BL (1988) J Biol Chem 263:11962–11970

    Google Scholar 

  • Yang X, Ljungdahl PO, Payne WE, Trumpower BL (1987) In: Osawa T, Papa S (eds) Bioenergetics: structure and function in energy transducing systems. Japan Sci Soc Press Tokyo/ Springer-Verlag, Berlin, pp 63–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. P. Slonimski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tron, T., Lemesle-Meunier, D. Two substitutions at the same position in the mitochondrial cytochrome b gene of S. cerevisiae induce a mitochondrial myxothiazol resistance and impair the respiratory growth of the mutated strains abbeit maintaining a good electron transfer activity. Curr Genet 18, 413–419 (1990). https://doi.org/10.1007/BF00309910

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309910

Key words

Navigation