Skip to main content
Log in

The temporal architecture of central information processing: Evidence for a tentative time-quantum model

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

A new, elaborated version of a time-quantum model (TQM) is outlined and illustrated by applying it to different experimental paradigms. As a basic prerequisite TQM adopts the coexistence of different discrete time units or (perceptual) intermittencies as constituent elements of the temporal architecture of mental processes. Unlike similar other approaches, TQM assumes the existence of an absolute lower bound for intermittencies, the time-quantum T, as an (approximately) universal constant and which has a duration of approximately 4.5 ms. Intermittencies of TQM must be multiples T k=k·T * within the interval T *T kL·T *M·T * with T *=q·T and integer q, k, L, and M. Here M denotes an upper bound for multipliers characteristic of individuals, the so-called coherence length; q and L may depend on task, individual and other factors. A second constraint is that admissible intermittencies must be integer fractions of L, the operative upper bound. In addition, M is assumed to determine the number of elementary information units to be stored in short-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 59, 365–406.

    Google Scholar 

  • Ansbacher, H. L. (1944). Distortion in the perception of movement. Journal of Experimental Psychology, 34, 1–23.

    Google Scholar 

  • Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In D. M. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology I. San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Baer, K. E. v. (1864). Welche Auffassung der lebendigen Natur ist die richtige? und wie ist diese Auffassung auf Entomologie anzuwenden? In Reden gehalten in wiss. Versammlungen und kleine Aufsätze vermischten Inhalts, pp. 237–283, St. Petersburg.

  • Bekešy, G. von (1936) Low-frequency thresholds for hearing and feeling. Annalen der Physik, 26, 554–566.

    Google Scholar 

  • Brown, H. L., & Kirsner, K. (1980). A within-subject analysis of the relationship between memory span and processing rate in short-term memory. Cognitive Psychology, 12, 1977–1987.

    Google Scholar 

  • Buffart, H., & Geissler, H.-G. (1984). Task-dependent representation of categories and memory-guided inference during classification. In E. Degreef & J. van Buggenhaut (Eds.), Trends in mathematical psychology. Amsterdam: North-Holland.

    Google Scholar 

  • Buffart, H., Geissler, H.-G., & van Leeuwen, K. (1984). Unpublished experiments on quantized processing in perception. Nijmegen.

  • Cavanagh, J. P. (1972). Relation between immediate memory span and the memory search rate. Psychological Review, 79, 525–530.

    Google Scholar 

  • Craik, K. J. (1948). Theory of human operators in control systems. I. The operator as an engineering system. British Journal of Psychology, 38, 56–61.

    Google Scholar 

  • Ganz, L. (1974). Temporal factors in visual perception. In C. Carterette & M. P. Friedman (Eds.) Handbook of perception: Vol. V, Seeing (Chapter 6, pp. 169–232). New York: Academic Press.

    Google Scholar 

  • Geissler, H.-G. (1985). Sources of seeming redundancy in temporally quantized information processing. In G. d'Ydewalle (Ed.), Cognitive information processing and motivation. Selected/Revised papers, Vol. 3, 23rd International Congress of Psychology. Amsterdam: North-Holland.

    Google Scholar 

  • Geissler, H.-G. (1986) Zeitquantenhypothese zur Struktur ultraschneller Gedächtnisprozesse. Zeitschrift für Psychologie, 193, 347–362.

    Google Scholar 

  • Geissler, H.-G., & Buffart, H. (1985). Task-dependency and quantized processing in classification. In G. d'Ydewalle (Ed.), Cognitive information processing and motivation. Selected/Revised papers, Vol. 3, 23rd International Congress of Psychology. Amsterdam: North-Holland.

    Google Scholar 

  • Geissler, H.-G., Schmidt, K.-D., & Ackermann, B. (1986). Temporally quantized processing in visual perception. In F. Klix (Ed.), In memoriam Herrmann Ebbinghaus. Amsterdam: North-Holland.

    Google Scholar 

  • Harter, M. R. (1967). Excitability cycles and cortical scanning: A review of two hypotheses of central intermittency in perception. Psychological Bulletin, 68, 47–58.

    Google Scholar 

  • Hendrickson, A. E. (1972). An integrated molar/molecular model of the brain. Psychological Reports, 30, 343–368.

    Google Scholar 

  • Hendrickson, D. E., & Hendrickson, A. E. (1980). The biological basis of individual differences in intelligence. Personality and Individual Differences, 1, 3–33.

    Google Scholar 

  • Holt-Hansen, K. (1970). Perception of a straight line briefly exposed. Perceptual and Motor Skills, 31, 59–69.

    Google Scholar 

  • Holt-Hansen, K. (1973). Experienced lengthening and shortening of a straight line fixated in the middle and briefly exposed. Perceptual and Motor Skills, 36, 1023–1029.

    Google Scholar 

  • Holt-Hansen, K. (1974). Duration of experienced lengthening and shortening of straight lines. Perceptual and Motor Skills, 39, 987–996.

    Google Scholar 

  • Holt-Hansen, K. (1975). Duration of experienced expansion and contraction of a circle. Perceptual and Motor Skills, 41, 507–518.

    Google Scholar 

  • Klix, F., & Hoffmann, J. (1978). The method of sentence-picture comparison as a possibility for analysing representation of meaning in human long-term memory. In F. Klix (Ed.), Human and artifical intelligence, Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Klix, F., & van der Meer, E. (1978). Analogical reasoning — an approach to mechanisms underlying human intelligence performances. In F. Klix (Ed.), Human and artificial intelligence, Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Köhler, W., Held, R., & O'Connell, D. N. (1952). An investigation of cortical currents. Proceedings of the American Philosophical Society, 96, 290–330.

    Google Scholar 

  • Köhler, W., & O'Connell, D. N. (1957). Currents of visual cortex in the cat. Journal of Cellular and Comparative Physiology, 49, Suppl. 2, 1–43.

    Google Scholar 

  • Kristofferson, A. B. (1967 a). Attention and psychophysical time. Acta Psychologica, 27, 93–100.

    Google Scholar 

  • Kristofferson, A. B. (1967 b). Successiveness discrimination as a two-state, quantal process. Science, 158, 1337–1339.

    Google Scholar 

  • Kristofferson, A. B. (1980). A quantal step function in duration. Perception & Psychophysics, 27, 300–306.

    Google Scholar 

  • Kristofferson, A. B. (1984). Quantal and deterministic timing in human duration discrimination. Annals of the New York Academy of Sciences, 423, 3–15.

    Google Scholar 

  • Latour, P. L. (1967). Evidence of internal clocks in the human operator. Acta Psychologica, 27, 341–348.

    Google Scholar 

  • Lebedev, A. N. (1976). On the neurophysiological basis of quantitative regularities in psychology. In H.-G. Geissler & Y. M. Zabordin (Eds.), Advances in psychophysics (pp. 411–416). Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Lebedev, A. N. (1982). Note on the equations for speed and capacity of perception. The skeleton of a physiological theory. In H.-G. Geissler & P. Petzold (Eds.), Psychophysical judgment and the process of perception. Amsterdam: North-Holland.

    Google Scholar 

  • McReynolds, P. (1953). Thinking conceptualized in terms of interacting moments. Psychological Review, 60, 319–330.

    Google Scholar 

  • Michon, J. A. (1965). De perceptie van duur. Nederlandsche Tijdschrift voor de Psychologie, 20, 391–418.

    Google Scholar 

  • Michon, J. A. (1967). Timing in temporal tracking. Assen: van Gorcum.

    Google Scholar 

  • Neumann, O. (1983). Moment. In J. Ritter & K. Gründer (Eds.), Historisches Wörterbuch der Philosophie (Vol. 6, S. 108–114). Basel, Stuttgart: Schwabe.

    Google Scholar 

  • Puckett, J. M., & Kausler, D. H. (1984). Individual differences and models of memory span: A role for memory search rate? Journal of Experimental Psychology: Learning, Memory and Cognition, 10, 72–82.

    Google Scholar 

  • Rawlins, J. N. P. (1985). Associations across time: The hippocampus as a temporary memory store. The Behavioral and Brain Sciences, 8, 479–496.

    Google Scholar 

  • Stadler, M., & Erke, H. (1968). Über einige periodische Vorgänge in der Figuralwahrnehmung. Vision Research, 8, 1081–1092.

    Google Scholar 

  • Staude, A. (1985). Zur Prüfung der Cavanagh-Hypothese über den Zusammenhang von Gedächtnissuchrate und Gedächtnisspanne durch interdisziplinären Vergleich. Unpublished diploma thesis. KMU, Leipzig.

    Google Scholar 

  • Stebel, J. (1980). Chronobiologische Forschungsaspekte am Carl-Ludwig-Institut. Wissenschaftliche Zeitschrift der Karl-Marx-Universität, Mathematisch-Naturwissenschaftliche Reihe, 29, Jg. 2, 181–189.

    Google Scholar 

  • Stebel, J. (1981). Feinstruktur-Spektralanalyse von Biorhythmen im Sekunden-Minutenbereich. In Abhandlungen der AdW der DDR, Abt. Mathematik, Naturwissenschaften, Technik, Jg. 1979, Nr. 1 N. Berlin: Akademie Verlag.

    Google Scholar 

  • Stebel, J., Sinz, R., & Kirmse, W. (1968). Über periodische Schwankungen des Kurzzeitgedächtnisses beim Menschen. In H. Drischel & N. Tiedt (Eds.), Biokybernetik. Leipzig: KMU Print.

    Google Scholar 

  • Sternberg, S. (1969), The discovery of processing stages: Extensions of Donders' method. In W. G. Koster (Ed.), Attention and performance II (pp. 276–315). Amsterdam: North Holland.

    Google Scholar 

  • Stroud, J. M. (1955). The fine structure of psychological time. In H. Quastler (Ed.), Information theory in psychology (pp. 174–207). Glencoe, Ill.: Free Press.

    Google Scholar 

  • Uttal, W. (1970). Violations of visual simultaneity. Perception & Psychophysics, 7, 133–136.

    Google Scholar 

  • Vanagas, V., Balkelite, O., Bartusyavitchus, E. & Kiryalis, D. (1976). The quantum character of recognition processes in human vision (in Russian). In V. D. Glezer (Ed.), Information processing in the visual system. Leningrad: Academy of Sciences of the USSR.

    Google Scholar 

  • Vroon, P. (1974). Is there a time quantum in duration experience? American Journal of Psychology, 87, 237–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geissler, HG. The temporal architecture of central information processing: Evidence for a tentative time-quantum model. Psychol. Res 49, 99–106 (1987). https://doi.org/10.1007/BF00308674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308674

Keywords

Navigation