Skip to main content
Log in

A model of the OH positions in olivine, derived from infrared-spectroscopic investigations

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polarized infrared (IR) spectroscopy of olivine crystals from Zabargad, Red Sea shows the existence of four pleochroic absorption bands at 3,590, 3,570, 3,520 and 3,230 cm−1, and of one non pleochroic band at 3,400 cm−1. The bands are assigned to OH stretching frequencies. Transmission electron microscopy (TEM) shows no oriented intergrowths in this olivine; it is concluded that OH is structural. On the basis of the pleochroic scheme of the absorption spectra it is proposed that [□O(OH)3] and [□O2(OH)2] tetrahedra occur as structural elements, assuming that the vacancies are on Si sites. If M2 site vacancies were assumed [SiO3(OH)] and [SiO2(OH)2] tetrahedra occur as structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beran A (1969) Über (OH)-Gruppen in Olivin. Oesterr Akad Wiss Math Naturwiss Kl Anzeiger 73–74

  • Beran A (1976) Messung des Ultrarot-Pleochroismus von Mineralen. XIV. Der Pleochroismus der OH-Streckfrequenz in Diopsid. Tschermaks Mineral Petrogr Mitt 23:79–85

    Google Scholar 

  • Beran A, Götzinger M, Zemann J (1981) Infrarotspektroskopische Untersuchungen über den OH-Gehalt von Pyroxenen und Cyaniten aus Gesteinen. Fortschr Mineral (Beih 1) 59:16–18

    Google Scholar 

  • Blacic JD (1972) Effects of water on the experimental deformation of olivine. In: Heard HC et al. (eds) Flow and fracture in rocks, Memo 16. Am Geophys Union Washington D.C., pp 109–115

  • Blacic JD, Christie JM (1973) Dislocation substructure of experimentally deformed olivine. Contrib Mineral Petrol 42:141–146

    Google Scholar 

  • Bragg WL, Brown GB (1926) Die Struktur des Olivins. Z Kristallogr 63:538–556

    Google Scholar 

  • Clocchiatti R, Massare D, Jehanno C (1981) Origine hydrothermale des olivines gemmes de l'ile de Zabargad (St. Johns) Mer Rouge, par l'étude de leurs inclusions. Bull Minéral 104:354–360

    Google Scholar 

  • Cohen-Addad C, Ducros P, Bertaut EF (1967) Étude de la substitution du groupement SiO4 par (OH)4 dans les composés Al2Ca3(OH)12 et Al2Ca3(SiO4)2,16(OH)3,36 de type grenat. Acta Crystallogr 23:220–230

    Google Scholar 

  • Donnay G, Allmann R (1970) How to recognize O2−, OH, and H2O in crystal structures determined by X-rays. Am Mineral 55:1003–1015

    Google Scholar 

  • Freund F (1981) Mechanism of the water and carbon dioxide solubility in oxides and silicates and the role of O. Contrib Mineral Petrol 76:474–482

    Google Scholar 

  • Griggs D (1967) Hydrolytic weakening of quartz and other silicates. Geophys J R Astron Soc 14:19–31

    Google Scholar 

  • Hanke K, Zemann J (1963) Verfeinerung der Kristallstruktur Olivin. Naturwissenschaften 50:91

    Google Scholar 

  • Ito J, Frondel C (1967) New synthetic hydrogarnets. Am Mineral 52:1105–1109

    Google Scholar 

  • Kurat G, Niedermayr G, Prinz M (1982) Peridot von Zabargad, Rotes Meer. Aufschluss 33:169–182

    Google Scholar 

  • Nover G, Will G (1981) Structure refinements of seven natural olivine crystals and the influence of the oxygen partial pressure on the cation distribution. Z Kristallogr 155:27–45

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

  • Wilson WE (1976) Famous mineral localities: Saint John's Island, Egypt. Mineral Rec 7:310–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beran, A., Putnis, A. A model of the OH positions in olivine, derived from infrared-spectroscopic investigations. Phys Chem Minerals 9, 57–60 (1983). https://doi.org/10.1007/BF00308148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308148

Keywords

Navigation