Skip to main content
Log in

Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The ratios Na/Li, K/Li, Na/Cs and K/Cs have been calculated for exchange equilibria among the Li and Cs silicates spodumene, petalite, eucryptite, and pollucite, and the alkali feldspars albite and K-feldspar plus quartz, in pure water and in chloride solutions at temperatures from 100° to 700°C and pressures from 0.5 to 4 kbar, using available thermodynamic data for minerals and the modified HKF equation of state for aqueous species. For exchange equilibria between Li-bearing aluminosilicates and the alkali feldspars, the activities of the alkali metals in solution under most of the conditions investigated follow the order Li>Na>K, and Na/Li and K/Li decrease with decreasing temperature. For exchange equilibria between pollucite and the alkali feldspars the order is Na>K>Cs in solution; Na/Cs and K/Cs increase strongly with decreasing temperature. The absolute values of these alkali metal ratios are in good agreement with the few available experimental data. The effect of chloride ion pairing on the calculated ratios is slight and does not consistently improve agreement between theory and experiment. These results suggest that the alteration of eucryptite, petalite or spodumene to albite and/or K-feldspar should be a normal consequence of the closed system evolution of rare element pegmatites upon cooling, in agreement with the ubiquity of such phenomena world-wide. On the other hand, alteration of pollucite to albite or K-feldspar upon cooling is only likely to occur if external fluids, with very high Na/Cs and/or K/Cs ratios, gain access to the pegmatite. Owing to the heterogeneity of rare element pegmatites, the fluid need not be external to the entire pegmatite, but could be simply external to the particular zone containing pollucite. Fluids in equilibrium with typical subsolidus rare metal pegmatite assemblages will invariably have high Li contents, thus explaining the common occurrence of Li-metasomatic halos about pegmatites. These same fluids are predicted to have relatively low Cs contents, in apparent agreement with the lesser role of Cs relative to Li in metasomatic halos. However, preferential formation of complexes of the alkali metals with fluoride, borate or aluminosilicate components potentially could alter the calculated alkali metal behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennington KO, Beyer RP, Johnson GK (1983) Thermodynamic properties of pollucite (a cesium-aluminum-silicate). US Bur Mines Rep Invest 8779:1–18

    Google Scholar 

  • Brimhall GH, Crerar DA (1987) Ore fluids: Magmatic to supergene In: Carmichael ISE, Eugster HP (eds) Thermodynamic modeling of geological materials: minerals, fluids and melts (Reviews in Minerology Society of America vol. 17). Minerological Washington DC, pp 235–321

  • Burnham CW, Nekvasil H (1986) Equilibrium properties of granite pegmatite magmas. Am Mineral 71:239–263

    Google Scholar 

  • Carron J-P, Lagache M (1980) Etude expérimentale du fractionnement des éléments Rb, Cs, Sr et Ba entre feldspaths alcalins, solutions hydrothermales et liquides silicatés dans le système Q. Ab.Or.H2O à 2 kbar entre 700 et 800°C. Bull Mineral 103:571–578

    Google Scholar 

  • Cerny P (1972) The Tanco Pegmatite at Bernic Lake, Manitoba. VIII. Secondary minerals from the spodumenerich zones. Can Mineral 11:714–726

    Google Scholar 

  • Cerny P (1974) The present status of the analcime-pollucite series, Can Mineral 12:334–341

    Google Scholar 

  • Cerny P (1975) Granitic pegmatites and their minerals: selected examples of recent progress. Fortschr Mineral 52:225–250

    Google Scholar 

  • Cerny P, Ferguson RB (1972) The Tanco Pegmatite at Bernic Lake, Manitoba. IV. Petalite and spodumene relations. Can Mineral 11:660–678

    Google Scholar 

  • Cerny P, Simpson FM (1978) The Tanco Pegmatite at Bernic. Lake, Manitoba. X. Pollucite. Can Mineral 16:325–333

    Google Scholar 

  • Channer DMD, Spooner ETC (1992) Analysis of fluid inclusion leachates from quartz by ion chromatography. Geochim Cosmochim Acta 56:249–259

    Google Scholar 

  • Dujon S-C, Lagache M, Sebastian A (1991) Experimental study of Li-rich granitic pegmatites: Part III. Thermodynamic implications of the experiments in the Na-Li-Cs system: consequences for the properties of solutes. Am Mineral 76:1614–1619

    Google Scholar 

  • Foord EE, Starkey HC, Taggart JE Jr (1986) Minerology and paragenesis of “pocket” clays and associated minerals in complex granitic pegmatites, San Diego County, California. Am Mineral 71:428–439

    Google Scholar 

  • Gordiyenko EV, Zhukova IA, Ponomareva NI (1988) The physicochemical conditions of formation of quartz-spodumene and quartz-muscovite aggregates in rare metal granite pegmatites. Int Geol Rev 30:53–61

    Google Scholar 

  • Heinrich EW (1965) Holmquistite and pegmatitic lithium exomorphism. Indian Mineralogist 6:1–13

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A:1–229

    Google Scholar 

  • Hemingway BS, Haas JL Jr, Robinson GR Jr (1982) Thermodynamic properties of selected minerals in the system Al2O3-CaO-SiO2-H2O at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1544:1–70

    Google Scholar 

  • Hemingway BS, Robie RA, Kittrick JA, Grew ES, Nelen JA, London D (1984) The heat capacities of osumilite from 298.15 K to 1000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K. Am Mineral 69:701–710

    Google Scholar 

  • Hemley JJ (1959) Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. Am J Sci 257:241–270

    Google Scholar 

  • Hemley JJ, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen ion metasomatism. Econ Geol 59:538–569

    Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Google Scholar 

  • Lagache M, Sabatier G (1973) Distribution des éléments Na, K, Rb et Cs à l'état de trace entre feldspaths alcalins et solutions hydrothermales à 650°C, 1 kbar: données expérimentales et interprétation thermodynamique. Geochim Cosmochim Acta 37:2617–2640

    Google Scholar 

  • Lagache M, Weisbrod A (1977) The system: two alkali feldspars-KCl-NaCl-H2O at moderate to high temperatures and low pressures

  • Lagache M, Sebastian A (1991) Experimental study of Li-rich granitic pegmatites: Part II. Spondumene+albite+quartz equilibrium. Am Mineral 76:611–616

    Google Scholar 

  • London D (1984) Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69:995–1004

    Google Scholar 

  • London D (1986a) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. Am Mineral 71:376–395

    Google Scholar 

  • London D (1986b) Holmquistite as a guide to pegmatitic rare metal deposits. Econ Geol 81:704–712

    Google Scholar 

  • London D, Burt DM (1982a) Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho District, Arizona. Am Mineral 67:97–113

    Google Scholar 

  • London D, Burt DM (1982b) Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. Am Mineral 67:494–509

    Google Scholar 

  • London D, Morgan GB VI, Hervig RL (1989) Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contrib Mineral Petrol 102:1–17

    Google Scholar 

  • Montoya JW, Hemley JJ (1975) Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol 70:577–582

    Google Scholar 

  • Morgan GB VI, London D (1987) Alteration of amphibolitic wall-rocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Am Mineral 72:1097–1121

    Google Scholar 

  • Oelkers EH, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: dissociation constants for supercritical alkali metal halides at temperatures from 400 to 800°C and pressures from 500 to 4000 bar. J Phys Chem 92:1631–1639

    Google Scholar 

  • Orville PM (1963) Alkali ion exhange between vapor and feldspar phases. Am J Sci 261:201–237

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 1452

  • Sebastian A, Lagache M (1990) Experimental study of the equilibrium between pollucite, albite and hydrothermal fluid in pegmatitic systems. Mineral Mag 54:447–454

    Google Scholar 

  • Sebastian A, Lagache M (1991) Experimental study of lithium-rich granitic pegmatites: Part I. Petalite+albite+quartz equilibrium. Am Mineral 76:205–210

    Google Scholar 

  • Shearer CK, Papike JJ (1988) Pegmatite-wallrock interaction: holmquistite-bearing amphibolite, Edison pegmatite, Black Hills, South Dakota. Am Mineral 73:324–337

    Google Scholar 

  • Shearer CK, Papike JJ, Simon SB, Laul JC (1986) Pegmatite-wallrock interactions, Black Hills, South Dakota: interaction between pagmatite-derived fluids and quartz-mica schist wall-rock. Am Mineral 71:518–539

    Google Scholar 

  • Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim Cosmochim Acta 52:2009–2036

    Google Scholar 

  • Stewart DB (1978) Petrogenesis of lithium-rich pegmatites. Am Mineral 63:970–980

    Google Scholar 

  • Sverjensky DA, Hemley JJ, D'Angelo WM (1991) Thermodynamic assessment of hydrothermal alkali feldspar mica-aluminosilicate equilibria. Geochim Cosmochim Acta 55:989–1004

    Google Scholar 

  • Tanger IV JC, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equation of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288:19–98

    Google Scholar 

  • Thomas AV, Spooner ETC (1988) Occurrence, petrology and fluid inclusion characteristics of tantalum mineralization in the Tanco granitic pegmatite, southeastern Manitoba. Can Inst Min Metall Spec Vol 39:208–222

    Google Scholar 

  • Volfinger M (1970) Partage de Na et Li entre sanidine, muscovite et solution hydrothermale à 600°C and 1000 bars. CR Acad Sci 271:1345–1347

    Google Scholar 

  • Volfinger M (1976) Effet de la température sur les distributions de Na, Rb et Cs entre la sanidine, la muscovite, la phlogopite et une solution hydrothermale sous une pression de 1 kbar. Geochim Cosmochim Acta 40:267–282

    Google Scholar 

  • Whitworth WP, Rankin AH (1989) Evolution of fluid phases associated with lithium pegmatites from SE Ireland. Mineral Mag 53:271–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, S.A., Williams-Jones, A.E. Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars. Contr. Mineral. and Petrol. 114, 255–263 (1993). https://doi.org/10.1007/BF00307760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307760

Keywords

Navigation