Skip to main content
Log in

Studies on the transport of secretory granules in the magnocellular hypothalamic neurons

I. Action of colchicine on axonal flow and neurotubules in the paraventricular nuclei

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The axonal flow of neurosecretory elementary granules has been studied in the paraventricular neurons of the rat (PVN), with the help of three techniques: light microscopy, radioautography after labelling with 35S-L-cysteine, and electron microscopy.

Colchicine treatment does not alter the uptake of 35S cysteine in the PVN but the flow of labelled neurosecretory material towards the neurohypophysis is interrupted. Interruption of the axonal flow is also evidenced by the stagnation of neurosecretory granules at the periphery of the neuronal cytoplasm and by the presence of numerous axonal swellings, heavily loaded with neurosecretory granules and often containing abnormal elongated granules, surrounded by a single membrane, oriented more or less parallely to the long axis of the axons. Other cell organelles and neurotubules are not altered. The present experiments bring further evidence of the arrest by colchicine of the axonal flow of secretory granules without apparent changes of the neurotubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, M. R., Borisy, G. G., Shelanski, M. L., Weisenberg, R. C., Taylor, E. W.: Cytoplasmic filaments and tubules. Fed. Proc. 27, 1186–1193 (1968).

    Google Scholar 

  • Bajer, A.: Notes on ultrastructure and some properties of transport within the living mitotic spindle. J. Cell Biol. 33, 713–719 (1967).

    Google Scholar 

  • Behnke, O., Forer, A.: Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2, 169–192 (1967).

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J. Cell Biol. 34, 525–534 (1967).

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967).

    Google Scholar 

  • Bunge, R., Bunge, M.: Electron microscopic observations on colchicine-induced changes in neuronal cytoplasm. Anat. Rec. 160, 323 (1968).

    Google Scholar 

  • Bunge, R., Bunge, M.: A comparison of neuronal changes following colchicine treatment with observations on other conditions involving the accumulation of neurofilaments. J. Neuropath. exp. Neurol. 28, 169 (1969).

    Google Scholar 

  • Dahlström, A.: Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Europ. J. Pharmacol. 5, 111–113 (1968).

    Google Scholar 

  • Dahlström, A., Häggendal, J.: Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta physiol. scand. 67, 271–277 (1966).

    Google Scholar 

  • Dahlström, A., Häggendal, J.: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand. 67, 278–288 (1966).

    Google Scholar 

  • Dustin, P., Jr.: Microtubules et microfilaments: leur rôle dans la dynamique cellulaire. Arch. Biol. (Liège) (sous presse).

  • Feit, H., Barondes, S. H.: Colchicine-binding activity in particulate fractions of mouse brain. J. Neurochem. 17, 1355–1364 (1970).

    Google Scholar 

  • Feit, H., Dutton, G., Barondes, S. B., Shelanski, M. L.: Metabolism of microtubule protein in mouse brain. J. Cell Biol. 47, 60a (1970).

    Google Scholar 

  • Fernandez, H. L., Burton, P. R., Samson, F. E.: Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons. J. Cell Biol. 51, 176–192 (1971).

    Google Scholar 

  • Flament-Durand, J.: Etude des relations hypothalamohypophysaires à l'aide de radioisotopes marqués au soufre 35. C. R. Acad. Sci. (Paris) 252, 3487–3500 (1961).

    Google Scholar 

  • Flament-Durand, J.: Contribution a l'étude de la neurosécrétion chez le rat par la méthode autoradiographique. In: Neurosécrétion (F. Stutinsky, ed.), p. 51–76. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Flament-Durand, J.: Ultrastructural aspects of the paraventricular nuclei in the rat. Z. Zellforsch. 116, 61–69 (1971).

    Google Scholar 

  • Fulton, C., Kane, R. E., Stephens, R. E.: Serological similarity of flagellar and mitotic microtubules. J. Cell Biol. 50, 762–773 (1971).

    Google Scholar 

  • Hökfelt, T., Dahlström, A.: Effects of two mitosis inhibitors (colchicine and vinblastine) on the distribution and axonal transport of noradrenaline storage particles, studied by fluorescence and electron microscope. Z. Zellforsch. 119, 460–482 (1971).

    Google Scholar 

  • Huneeus, F. C., Davison, P. F.: Fibrillar proteins from squid axons. I. Neurofilament protein. J. molec. Biol. 52, 415–428 (1970).

    Google Scholar 

  • Karlsson, J.-O., Hansson, H.-A., Sjöstrand, J.: Effect of colchicine on axonal transport and morphology of retinal ganglion cells. Z. Zellforsch. 115, 265–283 (1971).

    Google Scholar 

  • Kirkpatrick, J. B., Hyams, L., Thomas, V. L., Howley, P. M.: Purification of intact microtubules from brain. J. Cell Biol. 47, 384–394 (1970).

    Google Scholar 

  • Klein, M. J., Porte, A., Stutinsky, F.: Comparaison ultrastructurale des noyaux neurosécrétoires hypothalamiques chez le rat normal ou en état de surcharge. Bull. Ass. Anat. (Nancy) 142, 1066–1072 (1968).

    Google Scholar 

  • Kreutzberg, G. W.: Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. nat. Acat. Sci. (Wash.) 62, 722–728 (1969).

    Google Scholar 

  • McIntosh, J. R., Hepler, P. K., Van Wie, D. G.: Model for mitosis. Nature (Lond.) 224, 659–663 (1969).

    Google Scholar 

  • Norström, A., Hansson, H.-A., Sjöstrand, J.: Effects of cholchicine on axonal transport and ultrastructure of the hypothalamo-neurohypophyseal system of the rat. Z. Zellforsch. 113, 271–293 (1971).

    Google Scholar 

  • Ochs, S.: The dependence of fast transport in mammalian nerve fibers on metabolism. Acta neuropath. Suppl. (Berl.) 5, 86–96 (1971).

    Google Scholar 

  • Ochs, S., Ranish, N.: Metabolic dependence of fast axoplasmic transport in nerve. Science 167, 878–879 (1970).

    Google Scholar 

  • Peterson, E. R.: Neurofibrillar alterations in cord-ganglion cultures exposed to spindle inhibitors. J. Neuropath. exp. Neurol. 28, 168 (1969).

    Google Scholar 

  • Pilgrim, C.: Morphologische und funktionelle Untersuchungen zur Neurosekretbildung. Ergebn. Anat. Entwickl.-Gesch. 41, 1–77 (1969).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 7, 280–213 (1963).

    Google Scholar 

  • Schmitt, F. O.: Fibrous proteins-neuronal organelles. Proc. nat. Acad. Sci. (Wash.) 60, 1092–1101 (1969).

    Google Scholar 

  • Shelanski, M. L., Taylor, E. W.: Isolation of a protein sub-unit from microtubules. J. Cell Biol. 34, 549–554 (1967).

    Google Scholar 

  • Sjöstrand, J., Frizell, M., Hasselgren, P.-O.: Effects of colchicine on axonal transport in peripheral nerves. J. Neurochem. 17, 1563–1570 (1970).

    Google Scholar 

  • Sloper, J. C.: The application of newer histochemical and isotope techniques for the localisation of protein-bound cystine or cysteine to the study of hypothalamic neurosecretin in normal and pathological conditions. II Int. Symp. Neurosekretion, eds. W. Bargmann, B. Hanström, E. Scharrer, p. 20. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Sloper, J. C., Arnott, D. J., King, B. C.: Sulphur metabolism in the pituitary and hypothalamus of the rat: a study of radioisotope uptake after injection of S 35 DL-cysteine, methionine and sodium sulphate. J. Endocr. 20, 9–23 (1960).

    Google Scholar 

  • Weisenberg, R. C., Borisy, G. G., Taylor, E. W.: The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7, 4466–4478 (1968).

    Google Scholar 

  • Wiśniewski, H., Shelanski, M. L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol. 38, 224–229 (1968).

    Google Scholar 

  • Wiśniewski, H., Terry, R. D., Shelanski, M. L.: Neurofibrillary degeneration of nerve cells after subarachnoid injection of mitotic spindle inhibitors. J. Neuropath. exp. Neurol. 28, 168–169 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant (1970/1971) from the Belgian National Fund for Scientific Research (J. F.-D), and by grant No 1120 from the Belgian National Fund for Medical Research (P. D).

The authors wish to thank Mrs. A.-M. Hunninck-Couck for her devoted and skillful technical assistance, and are endebted to Dr. J. C. Heuson for kindly supplying the rats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flament-Durand, J., Dustin, P. Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. Z.Zellforsch 130, 440–454 (1972). https://doi.org/10.1007/BF00306998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306998

Key words

Navigation