Skip to main content
Log in

Long-term cell culture of two differentiated cell types from the liver of larval and adult Xenopus laevis

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Two distinct types of cells were derived from organ cultures of liver from adult and larval Xenopus laevis. Each type was isolated in clonal cell culture. Several media were compared with respect to support of epithelioid outgrowths from explants and support of growth of epithelioid colonies in cell culture. Ultracentrifuged embryo extract promotes the growth of all cell types, but the particulate fraction is also required for the maintenance of the epithelioid morphology of larval cells. In these media it was possible to maintain some epithelioid cell cultures for over 6 months. The identity and retention of some specialized functions of both cell types were demonstrated on larval cells. One cell type contained PAS-stainable, amylase-sensitive granules that increased in amount after treatment with glucocorticoids. This same type was shown by histochemical methods to contain phosphorylase, glucose-6-phosphatase, and dexamethasone-inducible tyrosine aminotransferase, and is considered to be a hepatocyte. The second type appears to be a sinusoidal cell, since it phagocytosed trypan blue and stained positively for acid phosphatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur, E., Balls, M.: Amphibian cells in vitro I. Growth of Xenopus cells in a soft agar medium and on an agar surface. Exp. Cell Res. 64, 113–118 (1971).

    Google Scholar 

  • Aterman, K.: Some local factors in the restoration of the rat's liver after partial hepatectomy I. Glycogen; the glycogen apparatus; sinusoidal cells; the basement membrane of the sinusoids. Arch. Path. 53, 197–208 (1952).

    Google Scholar 

  • Aterman, K.: The structure of the liver sinusoids and the sinusoidal cells. In: The liver, ed. by C. H. Rouiller, vol. II, p. 61–136. New York: Academic Press 1963.

    Google Scholar 

  • Balls, M., Ruben, L. N.: Cultivation in vitro of normal and neoplastic cells of Xenopus laevis. Exp. Cell Res. 43, 694–695 (1966).

    Google Scholar 

  • Beaumont, A.: Etude expérimentale de l'apparition du glycogène hépatique chez les larve d'amphibian anoures. Bull. Biol. Fr. et Belg. 94, 267–395 (1960).

    Google Scholar 

  • Bennett, T. P., Kriegstein, H., Glenn, J. S.: Thyroxine stimulation of ornithine transcarbamylase activity and protein synthesis in tadpole (Rana catesbeiana) liver in organ culture. Biochem. biophys. Res. Commun. 34, 412–417 (1969).

    Google Scholar 

  • Blatt, L. M., Kim, K. H., Cohen, P. P.: The effect of thyroxine on ribonucleic acid synthesis by premetamorphic tadpole liver cell suspensions. J. biol. Chem. 244, 4801–4807 (1969).

    Google Scholar 

  • Burstone, M. S.: Acid phosphatase activity of calcifying bone and dentin matrices. J. Histochem. Cytochem. 7, 147–148 (1959).

    Google Scholar 

  • Cahn, R. D., Coon, H. G., Cahn, M. B.: Growth of differentiated cells: cell culture and cloning techniques. In: Methods in developmental biology, ed. by F. Wilt and N. K. Wessells, p. 493–530. New York: Thomas Y. Crowell 1968.

    Google Scholar 

  • Chiffelle, T. L., Putt, F. A.: Propylene and ethylene glycol as solvents for sudan IV and sudan black B. Stain Technol. 26, 51–56 (1951).

    Google Scholar 

  • Chiquoine, A. D.: The distribution of glucose-6-phosphatase in the liver and kidney of the mouse. J. Histochem. Cytochem. 1, 429–435 (1953).

    Google Scholar 

  • Coll, M., Montbrun, M. Y.: Comportamiento de las células renales de Bufo marinas en differentes condiciones experimentales de cultivo. Acta cient. venez. 19, 12 (1968).

    Google Scholar 

  • Daoust, R.: The cell population of liver tissue and the cytological reference bases. Amer. Inst. Biol. Sci. Publ. 4, 3–10 (1958).

    Google Scholar 

  • Foote, C. L., Foote, F. M.: In vitro cultivation of gonads of larval anurans. Anat. Rec. 130, 553–565 (1958).

    Google Scholar 

  • Freed, J. J.: Continuous cultivation of cells derived from haploid Rana pipiens embryos. Exp. Cell Res. 26, 327–333 (1962).

    Google Scholar 

  • Freed, J. J., Mezger-Freed, L.: Stable haploid cultured cell lines from frog embryos. Proc. nat. Acad. Sci. (Wash.) 65, 337–344 (1970).

    Google Scholar 

  • Frieden, E., Just, J. J.: Hormonal responses in amphibian metamorphosis. In: Biochemical actions of hormones, ed. by G. Litwack, vol. I, p. 1–52. New York: Academic Press 1970.

    Google Scholar 

  • Granoff, A., Came, P. E., Rafferty, K. A.: The isolation and propagation of viruses from Rana pipiens: their possible relationship to the renal adenocarcinoma of the leopard frog. Ann. N. Y. Acad. Sci. 126, 237–255 (1965).

    Google Scholar 

  • Gurdon, J. B., Laskey, R. A.: The transplantation of nuclei from single cultured cells into enucleate frog's eggs. J. Embryol. exp. Morph. 24, 227–248 (1970).

    Google Scholar 

  • Hanke, W., Leist, K. H.: The effect of ACTH and corticosteroids on carbohydrate metabolism during the metamorphosis of Xenopus laevis. Gen. comp. Endocr. 16, 137–148 (1971).

    Google Scholar 

  • Hauser, R., Lehman, F. E.: Regeneration in isolated tails of Xenopus larvae. Experientia (Basel) 18, 83–84 (1962).

    Google Scholar 

  • Jacobson, A. G.: Amphibian cell culture, organ culture, and tissue dissociation. In: Methods in developmental biology, ed. by F. Wilt and N. K. Wessells, p. 531–542. New York. Thomas Y. Crowell 1968.

    Google Scholar 

  • Kaywin, L.: A cytological study of the digestive system of anuran larvae during accelerated metamorphosis. Anat. Rec. 64, 387–410 (1936).

    Google Scholar 

  • Lapiere, C. M., Gross, J.: Animal collagenases and collagen metabolism. In: Mechanism of hard tissue destruction, ed. by R. F. Sognnaes, p. 663–694. Washington, D. C.: A.A.A.S. 1963.

    Google Scholar 

  • Monnickendam, M. A., Millar, J. L., Balls, M.: Cell proliferation in vivo and in vitro in visceral organs of the adult newt, Triturus cristatus carnifex. J. Morph. 132, 453–460 (1970).

    Google Scholar 

  • Nieuwkoop, P. D., Farber, J.: Normal table of Xenopus laevis (Daudin). Amsterdam: North-Holland Publ. Co. 1956.

    Google Scholar 

  • Niizima, M.: Tissue culture studies on amphibian metamorphosis. I. Growth patterns in tadpole tissues. Okajimas Folia anat. jap. 28, 59–69 (1956).

    Google Scholar 

  • Novikoff, A. B., Essner, E.: The liver cell. Some new approaches to its study. Amer. J. Med. 29, 102–131 (1960).

    Google Scholar 

  • Ohanian, C.: Histochemical studies on phosphorylase activity in the tissues of the albino rat under normal and experimental conditions. Histochemie 24, 236–244 (1970).

    Google Scholar 

  • Pitot, H. C.: The comparative enzymology and cell origin of rat hepatomas II. Glutamate dehydrogenase, choline oxidase, and glucose-6-phosphatase. Cancer Res. 20, 1262–1268 (1960).

    Google Scholar 

  • Puck, T. T., Cieciura, S. J., Robinson, A.: Genetics of somatic mammalian cells III. Long-term cultivation of euploid cells from human and animal subjects. J. exp. Med. 108, 945–956 (1958).

    Google Scholar 

  • Rafferty, K. A.: Mass culture of amphibian cells: methods and observations concerning stability of cell type. In: Biology of amphibian tumors, ed. by M. Mizell, p. 52–81. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Rappaport, R., Rappaport, B. N.: An analysis of cytokinesis in cultured newt cells. J. exp. Zool. 168, 187–196 (1968).

    Google Scholar 

  • Regan, J. D., Cook, J. S., Lee, W. H.: Photoreactivation of amphibian cells in culture. J. Cell Physiol. 71, 173–176 (1968).

    Google Scholar 

  • Rothstein, H., Lauder, J. M., Weinsieder, A.: In vitro culture of amphibian lenses. Nature (Lond.) 206, 1267 (1965).

    Google Scholar 

  • Rothstein, H., Weinsieder, A., Freeman, N.: The amphibian lens: a three month organ culture. Experientia (Basel) 26, 1242–1245 (1970).

    Google Scholar 

  • Rutter, W. J., Wessells, N. K., Grobstein, C.: Control of specific synthesis in the developing pancreas. In: Molecular and cellular aspects of development, ed. by E. Bell, p. 381–391. New York: Harper and Row 1965.

    Google Scholar 

  • Seto, T., Rounds, D. E.: Cultivation of tissues and leukocytes from amphibians. In: Methods in cell physiology, ed. by D. M. Prescott, vol. III, p. 75–94. New York: Academic Press 1968.

    Google Scholar 

  • Shaffer, B. M.: The isolated Xenopus laevis tail: a preparation for studying the central nervous system and metamorphosis in culture. J. Embryol. exp. Morph. 11, 77–90 (1963).

    Google Scholar 

  • Simnett, J. D., Balls, M.: Cell proliferation in Xenopus tissues: a comparison of mitotic incidence in vivo and in organ culture. J. Morph. 127, 363–372 (1969).

    Google Scholar 

  • Sooy, L. E., Mezger-Freed, L.: A serum macromolecule-supplemented medium for frog cell lines. Exp. Cell Res. 60, 482–485 (1970).

    Google Scholar 

  • Thompson, E. B., Tomkins, G. M.: A histochemical method for the demonstration of tyrosine aminotransferase in tissue culture cells, and studies of this enzyme in hepatoma tissue culture cells. J. Cell Biol. 49, 921–927 (1971).

    Google Scholar 

  • Tiedemann, H.: Biochemical aspects of primary induction and determination. In: The biochemistry of animal development, ed. by R. Weber, vol. II, p. 3–55. New York: Academic Press 1967.

    Google Scholar 

  • Vanable, J. W., Mortensen, R. D.: Development of Xenopus laevis skin glands in organ culture. Exp. Cell Res. 44, 436–442 (1966).

    Google Scholar 

  • Wachstein, M.: Enzymatic histochemistry of the liver. Gastroenterology 37, 525–537 (1959).

    Google Scholar 

  • Wachstein, M., Meisel, E.: On the histochemical demonstration of glucose-6-phosphatase. J. Histochem. Cytochem. 4, 592 (1956).

    Google Scholar 

  • Weber, R.: Induced metamorphosis in isolated tails of Xenopus larvae. Experientia (Basel) 18, 84–85 (1962).

    Google Scholar 

  • Wolf, K., Quimby, M. C.: Amphibian cell culture: permanent cell line from the bullfrog (Rana catesbeiana). Science 144, 1578–1580 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solursh, M., Reiter, R.S. Long-term cell culture of two differentiated cell types from the liver of larval and adult Xenopus laevis . Z.Zellforsch 128, 457–469 (1972). https://doi.org/10.1007/BF00306982

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306982

Key words

Navigation