Skip to main content
Log in

Studies on reaction and binding of monoamines after fixation and processing for electron microscopy with special reference to fixation with potassium permanganate

  • Published:
Histochemie Aims and scope Submit manuscript

Summary

In the present paper certain properties of potassium permanganate (KMnO4), a fixative used for electron microscopical investigations, have been studied in model test tube experiments and on tissues. Evidence was obtained that KMnO4 reacts with different types of biogenic monoamines resulting in a formation of a precipitate. In addition, also various monoamine analogues, precursors and metabolites reacts with KMnO4. The reaction taking place may be an oxidation-reduction-reaction in which KMnO4 is reduced, probably mainly to manganese dioxide by hydroxyl groups of the amines and related compounds. This is corroborated by the fact that no reaction takes place between KMnO4 and β-phenylethylamine or amphetamine, two substances, which lack hydroxyl groups.

Using labelled monoamines evidence was obtained that the amine partly is retained within the precipitate formed after the reaction with KMnO4 and also in tissues fixed with KMnO4, indicating a possibility to perform autoradiographic studies on KMnO4 fixed tissue.

Electron microscopic studies on tissues fixed under various conditions revealed that fixation with low concentrations (0.6 and 1.0%) of KMnO4 and at high temperatures (about 20° C) leads to inferior results as to general morphology and as to the visualization of intraneuronal amine stores.

Different types of permanganates were tested as fixatives. These results show that fixation with permanganates with monovalent metallic ions (K+, Li+ and Na+) give good results of comparable quality, whereas fixation with zinc permanganate results in seriously destroyed tissues. However, tissue fixed with calcium permanganate reveals very distinct membranes. Furthermore, evidence was obtained that fixation with high concentrations of LiMnO4 (6 and 9%) and NaMnO4 (6 and 9%) was more sensitive as to the demonstration of monoamines at the ultrastructural level as compared to 3% KMnO4. Thus, with e.g. 6 and 9% LiMnO4 small granular vesicles could be seen in slices from the caudate nucleus after incubation with α-methyl-dopamine. This was not possible when using 3% KMnO4 as a fixative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius, B. A.: Chemical fixatives for electron microscopy. In: The Interpretation of Ultrastructure. (R. J. C. Harris, ed.), vol. 1, p. 1–19. New York: Academic Press 1962.

    Google Scholar 

  • Aghajanian, G. K., and F. E. Bloom: Electron-microscopic autoradiography of rat hypothalamus after intraventricular H3 -norepinephrine. Science 153, 308–310 (1966a).

    Google Scholar 

  • —: Localization of tritiated serotonin in rat brain by electron microscopic autoradiography. J. Pharmacol. exp. Ther. 156, 23–30 (1966b).

    Google Scholar 

  • —: Electron-microscopic localization of tritiated norepinephrine in rat brain. Effect of drugs. J. Pharmacol. exp. Ther. 156, 407–416 (1967).

    Google Scholar 

  • Andén, N. -E.: On the mechanism of noradrenaline depletion by α-methyl-metatyrosine and metaraminol. Acta pharmacol. (Kbh.) 21, 260–271 (1964).

    Google Scholar 

  • Arnold, M., u. G. Hager: Modellversuche zum elektronenmikroskopischen Nachweis von Noradrenalin. Histochemie 14, 72–80 (1968).

    Google Scholar 

  • Bahr, G. F.: Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains III. Exp. Cell Res. 7, 457–479 (1954).

    Google Scholar 

  • Bloom, F. E., and R. J. Barrnett: Fine structural localization of noradrenaline in vesicles of autonomic nerve endings. Nature (Lond.) 210, 599–601 (1966).

    Google Scholar 

  • Bondareff, W., and B. Gordon: Submicroscopic localization of norepinephrine in sympathetic nerves of rat pineal. J. Pharmacol. exp. Ther. 153, 42–47 (1966).

    Google Scholar 

  • Corrodi, H., and G. Jonsson: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).

    Google Scholar 

  • Coupland, R. E., and D. Hopwood: The mechanism of the differential staining reaction for adrenaline- and noradrenaline-storing granules in tissues fixed in glutaraldehyde. J. Anat. (Lond.) 100, 227–243 (1966).

    Google Scholar 

  • —, A. S. Pyper, and D. Hopwood: A method for differentiating between noradrenaline-and adrenaline-storing cells in the light and electron microscope. Nature (Lond.) 201, 1240–1242 (1964).

    Google Scholar 

  • de Robertis, E., and A. Pellegrino de Iraldi: Plurivesicular secretory processes and nerve endings in the pineal gland. J. biophys. biochem. Cytol. 10, 361–372 (1961a).

    Google Scholar 

  • —: A plurivesicular component in adrenergic nerve endings. Anat. Rec. 139, 299 (1961b).

    Google Scholar 

  • Descarries, L., et B. Droz: Incorporation de noradrénaline-3H (NA—3H) dans le système nerveus central du rat adulte. Étude radio-autographique. C. R. Acad. Sci. (Paris) 266, 2480–2482 (1968).

    Google Scholar 

  • Devine, C. E., and F. O. Simpson: Localization of tritiated norepinephrine in vascular sympathetic axons of the rat. J. Cell Biol. 38, 184–192 (1968).

    Google Scholar 

  • Elfvin, L. G., L. E. Appelgren, and S. Ullberg: High-resolution autoradiography of the adrenal medulla after injection of tritiated dihydroxyphenylalanine (Dopa). J. Ultrastruct. Res. 14, 277–293 (1966).

    Google Scholar 

  • Eränkö, O.: Histochemistry of noradrenaline in the adrenal medulla of rats and mice. Endocrinology 57, 363–368 (1955).

    Google Scholar 

  • Erös, G.: Eine neue Darstellungsmethode der sog. „gelben” argentaffinen Zellen des Magendarmtraktes. Zbl. allg. Path. path. Anat. 54, 385–391 (1932).

    Google Scholar 

  • Esterhuizen, A. C., J. D. P. Graham, J. D. Lever, and T. L. B. Spbiggs: Catecholamine and acetylcholinesterase distribution in relation to noradrenaline release. An enzyme histochemical and autoradiographic study on the innervation of the cat nictating muscle. Brit. J. Pharmacol. 32, 46–56 (1968).

    Google Scholar 

  • Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197 (1962).

  • —, N. -Å. Hillarp, G. Thieme, and A. Torp: Fluorescence of catecholamine and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).

    Google Scholar 

  • Fuxe, K., B. Hamberger, and T. Hökfelt: Distribution of noradrenaline nerve terminals in cortical areas of the rat. Brain Res. 8, 125–131 (1968).

    Google Scholar 

  • Gershon, M. D., and L. L. Ross: Radioisotopic studies of the localization of 5-hydroxytryptamine (discussion by E. Benditt). J. Histochem. Cytochem. 12, 19–20 (1964).

    Google Scholar 

  • —: Radioisotopic studies of the binding, exchange, and distribution of 5-hydroxytryptamine synthesized from its radioactive precursor. J. Physiol. (Lond.) 186, 451–476 (1966).

    Google Scholar 

  • Giachetti, A., and P. A. Shore: Intracellular distribution of metaraminol and related compounds in rat heart. Life Sci. 4, 1455–1460 (1965).

    Google Scholar 

  • Grillo, M., and S. L. Palay: Granule-containing vesicles in the autonomic nervous system. In: Electron microscopy (S. S. Breese Jr., ed.), vol. 2, p. U-1. New York: Academic Press 1962.

    Google Scholar 

  • Gutman, Y., and H. Weil-Malherbe: The intracellular distribution of brain catecholamines. J. Neurochem. 14, 619–625 (1966).

    Google Scholar 

  • Hake, K.: Studies on the reactions of OsO4 and KMnO4 with amino acids, peptides and proteins. Lab. Invest. 14, 1208–1212 (1965).

    Google Scholar 

  • Hanker, J. S., F. Kasler, M. G. Bloom, J. S. Copeland, and A. M. Seligman: Coordination polymers of osmium: The nature of osmium black. Science 156, 1737–1738 (1967).

    Google Scholar 

  • Henle, J.: Über das Gewebe der Nebenniere und der Hypophyse. Z. rationelle Med. 24, (1865).

  • Hillarp, N. Å., and B. Hökfelt: Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta physiol. scand. 30, 55–68 (1953).

    Google Scholar 

  • Hökfelt, T.: Electron microscopic studies on brain slices from regions rich in catecholamine nerve terminals. Acta physiol. scand. 69, 119–120 (1967a).

    Google Scholar 

  • —: Ultrastructural studies on adrenergic nerve terminals in the albino rat iris after pharmacological and experimental treatment. Acta physiol. scand. 69, 125–126 (1967b).

    Google Scholar 

  • —: On the ultrastructural localization of noradrenaline in the central nervous system of the rat. Z. Zellforsch. 79, 110–117 (1967c).

    Google Scholar 

  • —: The possible ultrastructural identification of tubero-infundibular dopamine-containing nerve endings in the median eminence of the rat. Brain Res. 5, 121–123 (1967d).

    Google Scholar 

  • —: In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch. 91, 1–74 (1968).

    Google Scholar 

  • Jonsson, G., B. Hamberger, T. Malmfors, and Ch. sachs: Studies on the uptake and accumulation of 3H-noradrenaline in adrenergic nerves of rat iris. (To be published.)

  • —, and M. Ritzen: Microspectrofluorometric identification of metaraminol in sympathetic adrenergic neurons. Acta physiol. scand. 67, 505–513 (1966).

    Google Scholar 

  • Larson, D. A., and C. Lewis Jr.: Cytoplasm in mature, non-germinated pollen. In: Proceedings of the Fifth International Congress for Electron Microscopy (S. S. Breese Jr., ed.), vol. 2, p. W-11. New York: Academic Press 1962.

    Google Scholar 

  • Lenard, J., and S. J. Singer: Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J. Cell Biol. 37, 117–121 (1968).

    Google Scholar 

  • Lenn, N. J.: Localization of uptake of tritiated norepinephrine by rat brain in vivo and in vitro using electron microscopic autoradiography. Amer. J. Anat. 120, 377–390 (1967).

    Google Scholar 

  • Lever, J. D., T. L. B. Spriggs, and J. D. P. Graham: A formol-fluorescence fine-structural and autoradiographic study of adrenergic innervation of vascular tree in the intact and sympathectomized pancreas of the cat. J. Anat. (Lond.) 103, 15–34 (1968).

    Google Scholar 

  • Luft, J. H.: Permanganate- a new fixative for electron microscopy. J. biophys. biochem. Cytol. 2, 799–802 (1956).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Lundborg, P., and B. Waldeck: Two different mechanisms for incorporation of 3H-metaraminol into the amine-storing granules. J. Pharm. Pharmacol. 18, 762–764 (1966).

    Google Scholar 

  • McEven, L. M.: The effect on the isolated rabbit heart of vagal stimulation and its modification by cocaine, hexamethonium and oubain. J. Physiol. (Lond.) 131, 678–689 (1956).

    Google Scholar 

  • Mollenhauer, H. H.: Permanganate fixation of plant cells. J. biophys. biochem. Cytol. 6, 431–435 (1959).

    Google Scholar 

  • Musacchio, J. M., I. J. Kopin, and S. Snyder: Effects of disulfiram on tissue norepinephrine content and subcellular distribution of dopamine, tyramine and their β-hydroxylated metabolites. Life Sci. 3, 769–775 (1964).

    Google Scholar 

  • —, and V. K. Weise: Subcellular distribution of some sympathomimetic amines and their β-hydroxylated derivatives in the rat heart. J. Pharmacol. exp. Ther. 148, 22–28 (1965).

    Google Scholar 

  • Orden, L. S. Van, F. E. Bloom, R. J. Barenett, and N. J. Giarmann: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. I. Participation of granular vesicles. J. Pharmacol. exp. Ther. 154, 185–199 (1966).

    Google Scholar 

  • Pearse, A. G. E.: Histochemistry, theoretical and applied. London: Churchill 1960.

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Rhodin, J.: Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. M. D. Thesis, Stockholm 1954.

  • Richardson, K. C.: The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Amer. J. Anat. 114, 173–206 (1964).

    Google Scholar 

  • —: Electron microscopic identification of autonomic nerve endings. Nature (Lond.) 210, 756 (1966).

    Google Scholar 

  • —: Cholinergic and adrenergic axons in methylene blue-stained rat iris: An electronmicroscopical study. Life Sci. 7, 599–604 (1968).

    Google Scholar 

  • Sabatini, D. D., K. Bensch, and R. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Schümann, H. J.: Über die Freisetzung von Brenzcatechinaminen durch Tyramin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 41–42 (1960).

    Google Scholar 

  • Schultz, R., and U. Kaelsson: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. II. Effect of osmolarity, pH of the perfusate, and fixative concentration. J. Ultrastruct. Res. 12, 187–206 (1965).

    Google Scholar 

  • Shore, P. A., D. Busfield, and H. S. Alpers: Binding and release of metaraminol: Mechanism of norepinephrine depletion by α-methyl-M-tyrosine and related agents. J. Pharmacol. exp. Ther. 146, 194–199 (1964).

    Google Scholar 

  • Snyder, S. H., I. A. Michaelson, and J. M. Musacchio: Purification of norepinephrine storage granules from rat heart. Life Sci. 3, 965–970 (1964).

    Google Scholar 

  • Taxi, J., et B. Droz: étude de l'incorporation de noradrenaline-3H (NA-3H) et des 5-hydroxytryptophane-3H(5-HTP-3H) dans les fibres nerveuses du canal deferent et de l'intestin. C. R. Acad. Sci. (Paris) 263, 1237–1240 (1966a).

    Google Scholar 

  • —: Étude de l'incorporation de noradrenaline-3H (NA-3H) et de 5-hydroxytryptophane-3H (5-HTP-3H) dans l'épiphyse et le ganglion cervicale superieur. C. R. Acad. Sci. (Paris) 263, 1326–1329 (1966b).

    Google Scholar 

  • Tramezzani, J. H., S. Chiocchio, and G. F. Wassermann: A technique for light and electron microscopic identification of adrenalin- and noradrenalin-storing cells. J. Histochem. Cytochem. 12, 890–899 (1964).

    Google Scholar 

  • Vitry, G.: Rôle de la glutaraldehyde dans les reactions de mise en évidence des catecholamines de la medullo-surrenale. Arch. micr. Morph. exp. 56, 31–42 (1967).

    Google Scholar 

  • Wetzel, B. K.: Sodium permanganate fixation for electron microscopy. J. biophys. biochem. Cytol. 9, 711–716 (1961).

    Google Scholar 

  • Wolfe, D. E., J. Axelrod, L. T. Potter, and K. C. Richardson: Localizing tritiated norepinephrine in sympathetic axons by electron microscope autoradiography. Science 138, 440–442 (1962).

    Google Scholar 

  • Wood, J. G.: Electron microscopic localization of amines in central nervous tissue. Nature (Lond.) 209, 1131–1133 (1966).

    Google Scholar 

  • —, R. J. Barrnett: Histochemical demonstration of norepinephrine at a fine structural level. J. Histochem. Cytochem. 12, 197–209 (1964).

    Google Scholar 

  • Zetterqvist, H.: The ultrastructural organization of the columnar absorbing cells of the mouse jejunum. M. D. Thesis, Stockholm, Sweden (1956).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hökfelt, T., Jonsson, G. Studies on reaction and binding of monoamines after fixation and processing for electron microscopy with special reference to fixation with potassium permanganate. Histochemie 16, 45–67 (1968). https://doi.org/10.1007/BF00306211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306211

Keywords

Navigation