Skip to main content
Log in

Methacarn (methanol-Carnoy) fixation

Practical and theoretical considerations

  • Published:
Histochemie Aims and scope Submit manuscript

Summary

According to chemical data, methanol raises the shrinkage temperature of collagen significantly more than ethanol (86° C versus 70° C). Since increase of shrinkage temperature appears desirable in tissues to be embedded in paraffin, methanol was substituted for ethanol in Carnoy's fluid. This methanol-Carnoy mixture is referred to as methacarn solution. The fixation-embedding procedure was similar to that described in the study of Carnoy fixation. Methacarn-fixed sections showed little or no shrinkage and compared well with material fixed in Carnoy's or Zenker's fluid. Myofibrils, especially in endothelial and epithelial cells, were more prominent in methacarn- than in Carnoy-fixed tissues.

A review of the chemical literature showed that methanol, ethanol and chloroform stabilize or even enhance helical conformations of proteins, presumably by strengthening of hydrogen bonds. Interference with hydrophobic bonds causes unfolding and/or structural rearrangements in globular proteins. The twin-helical structure of DNA collapses in alcoholic solutions. Hence, methacarn fixation can be expected to preserve the helical proteins in myofibrils and collagen, but the conformations of globular proteins and DNA will be significantly altered. Literature on conformational effects produced by fixatives used in electron microscopy was also reviewed. Glutaraldehyde and OsO4 cause considerable loss of helix (22–29% and 39–66% respectively). KMnO4 and glutaraldehyde followed by OsO4 produce extensive transitions from helical to random-coil conformations similar to those seen in powerful denaturants such as 8 M urea. Evidently these fixatives are unsuitable for studies of helical proteins. In contrast ethylene glycol preserves helical conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acampora, G., Hermans, J.: Reversible denaturation of sperm whale myoglobin. I. Dependence of temperature, pH, and composition. J. Amer. chem. Soc. 89, 1543–1547 (1967).

    Google Scholar 

  • Aune, K. C., Salahuddin, A., Zarlengo, M. H., Tanford, C.: Evidence for residual structure in acid- and heat-denatured proteins. J. biol. Chem. 242, 4486–4489 (1967).

    Google Scholar 

  • Baker, J. R.: Principles of Biological Microtechnique. London: Methuen & Co. Ltd. 1958.

    Google Scholar 

  • Bamford, C. H., Elliott, A., Hanby, W. E.: Synthetic polypeptides: Preparation, structure and properties. New York: Academic Press 1956.

    Google Scholar 

  • Barka, T., Anderson, P. J.: Histochemistry: Theory, practice and bibliography. New York: Hoeber Medical Division, Harper & Row 1963.

    Google Scholar 

  • Berendsen, H. J. C.: Water structure in biological systems. Fed Proc. 25, 971–976 (1966).

    Google Scholar 

  • Brahms, J., Kay, C. M.: Correlation of molecular and enzymatic properties of cardiac myosin A. In: Biochemistry of muscle contraction (J. Gergely, ed.), p. 69–86 Bonston. Little Brown & Co., 1964.

    Google Scholar 

  • Brandts, J. F.: The thermodynamics of protein denaturation. I. The denaturation of chymotrypsinogen. J. Amer. chem. Soc. 86, 4291–4301 (1964a).

    Google Scholar 

  • —: The thermodynamics of protein denaturation: II. A model of reversible denaturation and interpretation regarding the stability of chymotrypsinogen. J. Amer. chem. Soc. 86, 4302–4314 (1964).

    Google Scholar 

  • —, Lumry, R.: The reversible thermal denaturation of chymotrypsinogen. I. Experimental characterization. J. Phys. Chem. 67, 1484–1494 (1963).

    Google Scholar 

  • Breslow, E., Beychok, E., Hardman, K. D., Gurd, F. R. N.: Relative conformations of sperm whale metmyoglobin and apomyoglobin in solution. J. biol. Chem. 240, 304–309 (1965).

    Google Scholar 

  • Cohen, C., Hanson, J: An x-ray diffraction study of F-actin. Biochim. biophys. Acta (Amst.) 21, 177–178 (1956).

    Google Scholar 

  • Crowley, J. D., Teague, G. S., Lowe, J. W.: A three-dimensional approach to solubility. J. Paint Technol. 38, 269–280 (1966).

    Google Scholar 

  • Edsall, J. T., Thoughts on the conformation of proteins in solutions. In: Structural chemistry and molecular biology (A. Rich and N. Davidson, eds.). San Francisco: W. H. Freeman & Co. 1968.

    Google Scholar 

  • Flory, P. J.: Phase changes in proteins and polypeptides. J. Polymer Sci. 49, 105–128 (1961).

    Google Scholar 

  • Geiduschek, E. P., Gray, I.: Non-aqueous solutions of sodiumdesoxyribose-nuscleate. J. Amer. chem. Soc. 78, 879–880 (1956).

    Google Scholar 

  • —, Herskovits, T. T.: Nonaqueous solutions of DNA. Reversible and irreversible denaturation in methanol. Arch. Biochem. 95, 114–129 (1961).

    Google Scholar 

  • Grassmann, W.: Unsere heutige Kenntnis des Kollagens. Leder 6, 241–261 (1955).

    Google Scholar 

  • Gustavson, K. H.: The chemistry and reactivity of collagen. New York: Academic Press 1956.

    Google Scholar 

  • Hake, T.: Studies on the reactions of OsO4 and KMnO4 with amino acids, peptides and proteins. Lab. Invest. 14, 1208–1212 (1965).

    Google Scholar 

  • Hanson, J., Huxley, H. E.: Structural basis of cross-striation in muscle. Nature (Lond.) 172, 530–532 (1953).

    Google Scholar 

  • —, Lowy, J.: The structure of actin. In: Biochemistry of muscle contraction (J. Gergely, ed.), p. 141–157, Boston: Little, Brown & Co. 1964a.

    Google Scholar 

  • —: The structure of actin filaments and the origin of the axial periodicity in the I substance of vertebrate striated muscle. Proc. roy. Soc. 160B, 449–460 (1964b).

    Google Scholar 

  • Harper, J. T., Puchtler, H., Meloan, S. N., Terry, M. S.: Histochemical demonstration of myoepithelial filaments (myofibrils) in tubular and glomerular epithelium of human kidneys. Lab. Invest. 20, 585–586 (1969).

    Google Scholar 

  • Harrison, S. C., Blout, E. R.: Reversible conformational changes of myoglobin and apomyoglobin. J. biol. Chem. 240, 299–303 (1965).

    Google Scholar 

  • Harvey, G. G.: X-ray diffraction in liquid ethyl alcohol. J. Chem. Phys. 7, 878–880 (1939).

    Google Scholar 

  • Hermans, J.: The effect of protein denaturants on the stability of the α-helix. J. Amer. chem. Soc. 88, 2418–2422 (1966).

    Google Scholar 

  • —: Puett, D., Acampora, G.: On the conformation of denatured proteins. Biochemistry 8, 22–30 (1969).

    Google Scholar 

  • Herskovits, T. T.: Nonaqueous solutions of DNA: Factors determining the stabibity of the helical configuration in solution. Arch. Biochem. 97, 474–484 (1962).

    Google Scholar 

  • —: Conformation of proteins and polypeptides, I. Extension of the solvent pertubation technique of difference spectroscopy to the study of proteins and polypeptides in organic solvents. J. biol. Chem. 240, 628–638 (1965).

    Google Scholar 

  • —, Singer, S. I., Geiduschek, E. P.: Nonaqueous solutions of DNA. Denaturation in methanol and ethanol. Arch. Biochem. 94, 99–114 (1961).

    Google Scholar 

  • Huxley, H. E.: Structural evidence concerning the mechanism of contraction in striated muscle. In: Muscle, W. M. Paul, E. E. Daniel, C. M. Kay and G. Monckton, eds., p. 3–28. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1965.

    Google Scholar 

  • Inoue, H., Timasheff, S. N.: The interaction of β-lactoglobulin with solvent components in mixed water-organic solvent systems. J. Amer. chem. Soc. 90, 1890–1897 (1968).

    Google Scholar 

  • Jackson, J. G., Puchtler, H., Sweat, F.: Investigation of staining, polarization and fluorescence microscopic properties of pseudo-elastic fibers in the renal arterial system. J. roy. micr. Soc. 88, 473–485 (1968).

    Google Scholar 

  • Joiner, D. W., Puchtler, H., Sweat, F.: Staining of immature collagen by resorcin-fuchsin in infant kidneys. J. roy. micr. Soc. 88, 461–471 (1968).

    Google Scholar 

  • Jonsson, N., Lagerstedt, S.: Demonstration of ribonuclease activity in sections from Carnoy-fixed rat pancreas. Experientia (Basel) 13, 321–327 (1957).

    Google Scholar 

  • Kauzmann, W.: Some factors in the interpretation of protein denaturation. Advanc. Protein Chem. 14, 1–63 (1959).

    Google Scholar 

  • Kurnick, N. B.: Histological staining with methyl-green-pyronin. Stain Technol. 27, 233–242 (1952).

    Google Scholar 

  • Langeron, M.: Précis de Microscopie: Technique-Experimentation-Diagnostic. Paris: Masson & Cie. 1921.

    Google Scholar 

  • Leak, L. V.: Ultrastucture of proximal tubule cells in mouse kidneys as revealed by freeze etching. J. Ultrastruct. Res. 25, 253–270 (1968).

    Google Scholar 

  • Lenard, J., Singer, S. J.: Alterations of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J. Cell. Biol. 37, 117- 121 (1968).

    Google Scholar 

  • Liddel, U., Becker, E. D.: Infra-red spectroscopic studies of hydrogen bonding in methanol, ethanol, and t-butanol. Spectrochim. Acta 10, 70–84 (1957).

    Google Scholar 

  • Lillie, R. D.: The allochrome procedure: A differential method segregating the connective tissues: Collagen, reticulum and basement membranes into two groups. Amer. J. clin. Path. 21, 484–488 (1951).

    Google Scholar 

  • —: Histopathologic Technic and Practical Histochemistry, 3rd ed. New York: Blakiston Division, McGraw-Hill Book Co. 1965.

    Google Scholar 

  • Low, B. W.: The structure and configuration of amino acids, peptides and proteins. In: The proteins, vol. I, part A (H. Neurath and K. Bailey, eds). New York: Academic Press 1953.

    Google Scholar 

  • Luft, J. H.: Permanganate — A new fixative for electron microscopy. J. biophys. biochem. Cytol. 2, 799–802 (1956).

    Google Scholar 

  • Mann, G.: Physiological histology. Oxford: Clarendon Press 1902.

    Google Scholar 

  • McManus, J. F. A., Mowry, R. W.: Staining methods:Histologic and histochemical. New York: Paul B. Hoeber 1960.

    Google Scholar 

  • Miller, A.: An axial repeat in tropomyosin. J. molec. Biol. 12, 280–282 (1965).

    Google Scholar 

  • Monick, J. A., Alcohols: Their chemistry, properties and manufacture. New York: Reinhold Book Corp. 1968.

    Google Scholar 

  • Nozaki, Y., Tanford, C.: The solubility of amino acids and related compounds in aqueous urea solution. J. biol. Chem. 238, 4074–4081 (1963).

    Google Scholar 

  • —: The solubility of amino acids and related compounds in aqueous ethylene glycol solutions. J. biol. Chem. 240, 3568–3573 (1965).

    Google Scholar 

  • Otto, G.: Das Färben des Leders. Darmstadt: Eduard Roether 1962.

    Google Scholar 

  • Pauling, L.: The structure of water. In: Hydrogen bonding (D. Hadzi and H. W. Tompson, eds.). New York: Pergamon Press 1959.

    Google Scholar 

  • Pearse, A. G. E.: Histochemistry: Theoretical and applied, 3rd ed., vol. I., Boston: Little, Brown & Co. 1968.

    Google Scholar 

  • Pease, D. C.: The preservation of tissue fine structure during rapid freezing. J. Ultrastruct. Res. 21, 98–124 (1967).

    Google Scholar 

  • —: Eutectic ethylene glycol and pure propylene glycol as substituting media for the dehydration of frozen tissue. J. Ultrastruct. Res. 21, 75–97 (1967).

    Google Scholar 

  • —: Structural features of unfixed mammalian smooth and striated muscle prepared by glycol dehydration. J. Ultrastruct. Res. 23, 280–303 (1968a).

    Google Scholar 

  • —: Myoid features of renal corpuscles and tubules. J. Ultrastruct. Res. 23, 304–320 (1968b).

    Google Scholar 

  • Pimentel, G. C., McClellan, A. L.: The hydrogen bond. San Francisco: W. H. Freeman 1960.

    Google Scholar 

  • Puchtler, H., Rosenthal, S. I., Sweat, F.: Revision of the amidoblack stain for hemoglobin. Arch. Path. 78, 76–78 (1964).

    Google Scholar 

  • —, Sweat, F.: Amidoblack as a stain for hemoglobin. Arch. Path. 73, 245–249 (1962).

    Google Scholar 

  • —: Histochemical specificity of staining methods for connective tissue fibers: Resorcinfuchsin and Van Gieson's picro-fuchsin. Histochemie 4, 24–34 (1964a).

    Google Scholar 

  • —: A cresyl fast violet stain for bacteria and fungi in tissues. Stain Technol. 39, 1–5 (1964b).

    Google Scholar 

  • —: A selective stain for renal basement membranes. Stain Technol. 39, 163–166 (1964c).

    Google Scholar 

  • —, Sweat, F., Jackson, J. G., Joiner, D. W.: Collagen-like staining, polarization and fluorescence microscopic properties of “elastic fibers” in hyperplastic arteriosclerosis. In: Biochemistry and physiology of connective tissue (Ph. Comte, ed.). Lyon: Société Orméco et l'Imprimerie du Sud-Est 1966.

    Google Scholar 

  • —, Terry, M. S., Conner, H. M.: Investigation of staining, polarization and fluorescence microscopic properties of myoendothelial cells. J. Microsc. 89, 95–104 (1969a).

    Google Scholar 

  • —, Sweat Waldrop, F., Terry, M. S., Conner, H. M.: Carnoy fixation: Practical and theoretical considerations. Histochemie 16, 361–371 (1968).

    Google Scholar 

  • —: A combined PAS-myofibril stain for demonstration of early lesions of striated muscle. J. Microsc. 89, 329–338 (1969b).

    Google Scholar 

  • Ramachandran, G. N.: Structure of collagen at the molecular level. In: Treatise on Collagen, Vol. 1 (G. N. Ramachandran, ed.), p. 103–183. London and New York: Academic Press 1967.

    Google Scholar 

  • Romeis, B.: Mikroskopische Technik. München: Leibniz 1948.

    Google Scholar 

  • Roulet, F.: Methoden der Pathologischen Histologie. Wien: Springer 1948.

    Google Scholar 

  • Sage, H. J., Singer, S. F.: The properties of bovine pancreatic ribonuclease in ethylene glycol solution. Biochemistry 1, 305–317 (1963).

    Google Scholar 

  • Sax, N. I.: Dangerous properties of industrial materials. New York: Reinhold Publish. Co. 1963.

    Google Scholar 

  • Scatchard, G.: Water: a review. Fed. Proc. 25, 954–957 (1966).

    Google Scholar 

  • Schrier, E. E., Scheraga, H. A.: The effect of aqueous alcohol solutions on the thermal transition of ribonuclease. Biochim. biophys. Acta (Amst.) 64, 406–408 (1962).

    Google Scholar 

  • Seifter, S., Gallop, P. M.: The structure proteins. In: The proteins: Composition, structure and function, vol. IV, 2nd ed. (H. Neurath, ed.). New York: Academic Press 1966.

    Google Scholar 

  • Singer, S. J.: The properties of proteins in nonaqueous solvents. Advanc. Protein Chem. 17, 1–68 (1962).

    Google Scholar 

  • Stevenson, D. P.: Molecular species in liquid water. In: Structural chemistry and molecular biology (A. Rich and N. Davidson, eds.), San Francisco: W. H. Freeman & Co. 1968.

    Google Scholar 

  • Stuart, A. V., Sutherland, G. B. S. M.: Effect of hydrogen bonding on the deformation frequencies of the hydroxyl group in alcohols. J. Chem. Phys. 24, 559–570 (1956).

    Google Scholar 

  • Susi, H., Timasheff, S. N., Stevens, L.: Infrared spectra and protein conformations in aqueous solutions. J. biol. Chem. 242, 5460–5466 (1967).

    Google Scholar 

  • Sweat, F., Meloan, S. N., Puchtler, H.: A modified one-step trichrome stain for demonstration of fine connective tissue fibers. Stain Technol. 43, 227–231 (1968).

    Google Scholar 

  • —, Puchtler, H., Rosenthal, S. I.: Sirius red F3BA as a stain for connective tissue. Arch. Path. 78, 69–72 (1964a).

    Google Scholar 

  • —, Woo, P.: Periodic acid-Schiff-Picro-sirius supra blue GL: a light fast modification of Lillie's allochrome stain. Arch. Path. 78, 73–75 (1964b).

    Google Scholar 

  • Tanford, C.: Physical chemistry of macromolecules. New York: Wiley & Son, Inc. 1961a.

    Google Scholar 

  • —: Discussion of paper by Anfinsen, C. B.: The influence of threedimensional configuration on the chemical reactivity and stability of proteins. J. Polymer Sci. 49, 44 (1961b).

    Google Scholar 

  • Tanford, C.: Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Amer. chem. Soc. 84, 4240–4247 (1962).

    Google Scholar 

  • —, Buckley, C. E., De, P. K., Lively, E. P.: Effect of ethylene glycol on the conformation of γ-globulin and β-lactoglobulin. J. biol. Chem. 237, 1168–1171 (1962).

    Google Scholar 

  • —, De, P. K.: The unfolding of β-lactoglobulin at pH 3 by urea, formamide and other organic substances. J. biol. Chem. 236, 1711–1715 (1961).

    Google Scholar 

  • —, Taggart, V. G.: The role of the α-helix in the structure of proteins. Optical rotatory dispersion of α-lactoglobulin. J. Amer. chem. Soc. 82, 6028–6034 (1960).

    Google Scholar 

  • Tellyesniczky, K. V.: Fixation. In: Enzyklopädie der Mikroskopischen Technik, vol. I, 2nd ed. (P. Ehrlich, R. Krause, M. Mosse, H. Rosin and K. Weigert, eds.). Berlin-Wien: Urban & Schwarzenberg 1910.

    Google Scholar 

  • Timasheff, S. N., Susi, H., Stevens, L.: Infrared spectra and protein conformation in aqueous solutions. J. biol. Chem. 242, 5467–5473 (1967).

    Google Scholar 

  • —, Townend, R., Mescanti, L.: The optical rotatory dispersion of the β-lactoglobulins. J. biol. Chem. 241, 1863–1870 (1966).

    Google Scholar 

  • Trump, B. F., Ericsson, J. L. E.: The effect of the fixative solution on the ultrastructure of cells and tissues. A comparative analysis with particular attention to the proximal convoluted tubule of the rat kidney, Lab. Invest. 14, 1245–1323 (1965).

    Google Scholar 

  • Veis, A.: The macromolecular chemistry of gelatin. New York and London: Academic Press 1964.

    Google Scholar 

  • Waldrop, F. S., Puchtler, H., Terry, M S., Conner, H. M.: Histochemical demonstration of early lesions in cardiac and skeletal muscle. Bull. Georgia Acad. Sci. 27, 104 (1969).

    Google Scholar 

  • Waugh, D., Prentice, R. S. A., Yadav, D.: The structure of the proximal tubule: A morphological study of basement membrane cristae and their relationships in the renal tubule of the rat. Amer. J. Anat. 121, 775–786 (1967).

    Google Scholar 

  • Weber, R. E., Tanford, C.: The configuration of ribonuclease at low pH in 2-chloroethanol and in 2-chloroethanol-water mixtures. J. Amer. chem. Soc. 81, 3255–3260 (1959).

    Google Scholar 

  • Wu, C. S. C.: Comparative studies on myosins from breast and leg muscle of chickens. Biochemistry 8, 39–48 (1969).

    Google Scholar 

  • Young, D. M., Harrington, W. F., Kielly, W. W.: The dissociation and reassociation of the subunit polypeptide chains in myosin. J. biol. Chem. 237, 3116–3122 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puchtler, H., Waldrop, F.S., Meloan, S.N. et al. Methacarn (methanol-Carnoy) fixation. Histochemie 21, 97–116 (1970). https://doi.org/10.1007/BF00306176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306176

Keywords

Navigation