Skip to main content
Log in

Functional assignment of Erwinia herbicola Eho10 carotenoid genes expressed in Escherichia coli

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Erwinia herbicola is a nonphotosynthetic bacterium that is yellow pigmented due to the presence of carotenoids. When the Erwinia carotenoid biosynthetic genes are expressed in Escherichia coli, this bacterium also displays a yellow phenotype. The DNA sequence of the plasmid pPL376, carrying the entire Erwinia carotenoid gene cluster, has been found to contain 12 open reading frames (ORFs). Six of the ORFs have been identified as carotenoid biosynthesis genes that code for all the enzymes required for conversion of farnesyl pyrophosphate (FPP) to zeaxanthin diglucoside via geranylgeranyl pyrophosphate, phytoene, lycopene, β-carotene, and zeaxanthin. These enzymatic steps were assigned after disruption of each ORF by a specific mutation and analysis of the accumulated intermediates. Carotenoid intermediates were identified by the absorption spectra of the colored components and by high pressure liquid chromatographic analysis. The six carotenoid genes are arranged in at least two operons. The gene coding for β-carotene hydroxylase is transcribed in the opposite direction from that of the other carotenoid genes and overlaps with the gene for phytoene synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Warren G, Miller W, Myers E, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Armstrong GA, Alberti M, Leach F, Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216:254–268

    Google Scholar 

  • Armstrong GA, Alberti M, Hearst JE (1990) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci USA 87:9975–9979

    Google Scholar 

  • Armstrong GA, Hundle BS, Hearst JE (1993) Evolutionary conservation and structural similarities of carotenoid biosynthesis gene products from photosynthetic and nonphotosynthetic organisms. Methods Enzymol 214:297–311

    Google Scholar 

  • Barany F (1985) Single-stranded hexameric linkers: a system for in-phase insertion mutagenisis and protein engineering. Gene 37:111–123

    Google Scholar 

  • Fraser PD, Misawa N, Linden H, Yamano S, Kobayashi K, Sandmann G (1992) Expression in Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase. J Biol Chem 267:19891–19895

    Google Scholar 

  • Hundle BS, Beyer P, Kleinig H, Englert G, Hearst JE (1991) Carotenoids of Erwinia herbicola and an Escherichia coli HB101 strain carrying the Erwinia herbicola carotenoid gene cluster. Photochem Photobiol 54:89–93

    Google Scholar 

  • Hundle BS, O'Brien DA, Alberti M, Beyer P, Hearst JE (1992). Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Natl Acad Sci USA 89:9321–9325

    Google Scholar 

  • Hundle BS, O'Brien DA, Beyer P, Kleinig H, Hearst JE (1993) In vitro expression and activity of lycopene cyclase and β-carotene hydoxylase from Erwinia herbicola. FEBS Lett 315:329–334

    Google Scholar 

  • Hunter CN, Hundle BS, Hearst JE, Lang HP, Gardiner AT, Takaichi S, Cogdell RJ (1994) Introduction of new carotenoids into the bacterial photosynthetic apparatus by splicing the genes for carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J Bacteriol 176:3692–3697

    Google Scholar 

  • Lee L-Y, Liu S-T (1991) Characterization of the yellow-pigment genes of Erwinia herbicola. Mol Microbiol 5:217–224

    Google Scholar 

  • Liu S-T (1993) Carotenoid-biosynthesis genes as a genetic marker for the purpose of gene cloning. Biochem Biophys Res Commun 195:259–263

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Marrs B (1981) Mobilization of the genes for photosynthesis from Rhodobacter capsulata by a promiscuous plasmid. J Bacteriol 146:1003–1012

    Google Scholar 

  • Math SK, Hearst JE, Poulter DC (1992) The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase. Proc Natl Acad Sci USA 89:6761–6764

    Google Scholar 

  • McClure WR (1985) Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54:171–204

    Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    Google Scholar 

  • Nagy M, Lacroute F, Dominique T (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA 89:8966–8970

    Google Scholar 

  • Ohnuma S, Suzuki M, Nishino T (1994) Archaebacterial etherlinked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase. J Biol Chem 269:14792–14797

    Google Scholar 

  • Perry KC, Simonitch TA, Harrison-Lavoie KJ, Liu ST (1986) Cloning and regulation of Erwinia herbicola pigment genes. J Bacteriol 168:607–612

    Google Scholar 

  • Sandmann G, Misawa N (1991) New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Lett 90:253–258

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Straub O (1987) In: Pfander H, Rychener M. Schwabe R (eds) Key to carotenoids. BirkMuser Verlag; pp 32–90

  • Tuveson RW, Larson RA, Kagan J (1988) Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J Bacteriol 170:4675–4680

    Google Scholar 

  • Weidemann M, Misawa N, Sandmann G (1993) Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in Escherichia coli. Arch Biochem Biophys 306:152–157

    Google Scholar 

  • Wierenga RK, Terpstra P, Hol WGJ (1986) Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hundle, B., Alberti, M., Nievelstein, V. et al. Functional assignment of Erwinia herbicola Eho10 carotenoid genes expressed in Escherichia coli . Molec. Gen. Genet. 245, 406–416 (1994). https://doi.org/10.1007/BF00302252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302252

Key words

Navigation