Skip to main content
Log in

Temperature regulation of the testes of the bottlenose dolphin (Tursiops truncatus): evidence from colonic temperatures

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Dolphins possess a countercurrent heat exchanger that functions to cool their intra-abdominal testes. spermatic arteries in the posterior abdomen are juxtaposed to veins returning cooled blood from the surfaces of the dorsal fin and flukes. A rectal probe housing a linear array of five copper-constantan thermocouples was designed to measure colonic temperatures simultaneously at positions anterior to, within, and posterior to the region of the colon flanked by the countercurrent heat exchanger. Colonic temperatures adjacent to the countercurrent heat exchanger were maximally 1.3°C cooler than temperatures measured outside this region. Temporary heating and cooling of the dorsal fin and flukes affected temperatures at the countercurrent heat exchanger, but had little or no effect on temperatures posterior to its position. These measurements support the hypothesis that cooled blood is introduced into the deep abdominal cavity and functions specifically to regulate the temperature of arterial blood flow to the dolphin testes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bw:

body weight

CCHE:

countercurrent heat exchanger

T w :

water temperature

T air :

air temperature

T b :

body temperature(s)

T c :

colonic temperature(s)

References

  • Bedford JM (1977) Evolution of the scrotum: the epididymis as the prime mover? In: Calaby JH, Tyndale-Biscoe CH (eds) Reproduction and evolution. Australian Academy of Science, Canberra City, pp 171–182

    Google Scholar 

  • Carrick FN, Setchell BP (1977) The evolution of the scrotum. In: Calaby JH, Tyndale-Biscoe CH (eds) Reproduction and evolution. Australian Academy of Science, Canberra City, pp 165–170

    Google Scholar 

  • Cowles RB (1958) The evolutionary significance of the scrotum. Evolution 12:417–418

    Google Scholar 

  • Cowles RB (1965) Hyperthermia, aspermia, mutation rates and evolution. Q Rev Biol 40:341–367

    Article  Google Scholar 

  • Fish FE, Hui CA (1991) Dolphin swimming — a review. Mammal Rev 21:181–195

    Google Scholar 

  • Geraci JR (1981) Marine mammal care. Univ. of Guelph, Ontario

    Google Scholar 

  • Hampton IFG Whittow GC (1976) Body temperature and heat exchange in the Hawaiian spinner dolphin, Stenella longirostris. Comp Biochem Physiol 55A:195–197

    Google Scholar 

  • McGinnis SM, Whittow GC, Ohata CA, Huber H (1972) Body heat dissipation and conservation in two species of dolphins. Comp Biochem Physiol 43A:417–423

    Google Scholar 

  • Moore CR (1926) The biology of the mammalian testis and scrotum. Q Rev Biol 1:4–50

    Article  Google Scholar 

  • Ridgway SH (1972) Homeostasis in the aquatic environment. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Thomas, Springfield, pp 590–747

    Google Scholar 

  • Rommel SA, Pabst DA, McLellan WA, Mead JG, Potter CW (1992) Anatomical evidence for a countercurrent heat exchanger associated with dolphin testes. Anat Rec 232:150–156

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation an environment, 4th edn. Cambridge Univ Press, New York

    Google Scholar 

  • Scholander PF, Schevill WE (1955) Countercurrent vascular heat exchange in the fins of whales. J Appl Physiol 8:279–282

    CAS  PubMed  Google Scholar 

  • Sweeney JC, Ridgway SH (1975) Procedures for the clinical management of small cetaceans. J Am Vet Med Assoc 167:540–545

    CAS  PubMed  Google Scholar 

  • VanDemark NL, Free MJ (1970) Temperature effects. In: Johnson AD et al. (eds) The testis, vol III. Academic Press, New York, pp 233–312

    Google Scholar 

  • Waites GMH (1970) Temperature regulation and the testis. In: Johnson AD et al. (eds) The testis, vol I. Academic Press, New York, pp 241–279

    Google Scholar 

  • Williams TM, Frield WA, Fong ML, Yamada RM, Sedivy P, Haun JE (1992) Travel at low energetic cost by swimming and waveriding bottlenose dolphins. Nature 355:821–823

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommel, S.A., Pabst, D.A., McLellan, W.A. et al. Temperature regulation of the testes of the bottlenose dolphin (Tursiops truncatus): evidence from colonic temperatures. J Comp Physiol B 164, 130–134 (1994). https://doi.org/10.1007/BF00301654

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301654

Key words

Navigation