Skip to main content
Log in

Neuronal types in the neocortex-dependent lateral territory of the human thalamus

Golgi-pigment study

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Nerve cell types of the neocortex-dependent nuclei of the human thalamus were investigated with the use of a transparent Golgi technique, that allows one to study not only the peculiarities of the cell processes, but also the marking characteristics of the intraneuronal lipofuscin pigment deposits. Three principal types of neurons have been distinguished:

Type I is a medium-sized to large neuron with a profusely radiating dendrite system. Numerous large vacuolated pofuscin granules are cotained in one pole of the cell body.

Type II is a small to medium-sized neuron with a few sparsely branching dendrites. Small and intensely stained pigment granules are dispersed within the cell body.

Type III is a medium-sized to large neuron with only a few thick and almost unbranched dendrites devoid of spiny appendages. The dendrites extend over long distances. The cell body is devoid of lipofuscin granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew J, Watkins ES (1969) A stereotaxic atals of the human thalamus and adjacent structures. Williams and Wilkins, Baltimore

    Google Scholar 

  • Braak E, Braak H (1983) On three types of large nerve cells in the granular layer of the human cerebellar cortex. Anat Embryol 166:67–86

    Google Scholar 

  • braak H (1978) On the pigmentarchitectonics of the human telencephalic cortex. In: MAB Brazier, H Petsche (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 137–157

    Google Scholar 

  • Braak H (1980) Atchitectonics of the human telencephalic cortex. In: V Braitenberg, HB Barlow, E Bizzi, E Florey, OJ Grüsser, H van der Loos (eds) Studies of brain function, Vol 4. Springer, Berlin Heidelberg New York, pp 1–147

    Google Scholar 

  • Braak H (1983) Transparent Golgi impregnations: a way to examine body details of cellular processes and components of the cell body. Stain Technol 58:91–95

    Google Scholar 

  • Braak H (in press) Architectonics as seen by lipofuscin stains. In: EG Jones, A Peters (eds) Cerebral cortex. Plenum Press, New York

  • Braak H, Braak E (1982a) Neuronal types in the claustrum of man. Anat Embryol 163:447–460

    Google Scholar 

  • Braak H, Braak E (1982b) Neuronal types in the striatum of man. Cell Tissue Res 227:319–342

    Google Scholar 

  • Braak H, Braak E (1983) Morphological studies of local circuit neurons in the cerebellar dentate nucleus of man. Human Neurobiol 2:49–57

    Google Scholar 

  • Braak H, Braak E (in press) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull (in press)

  • Braitenberg V, Guglielmotti U, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42:277–283

    Google Scholar 

  • Buren JM van, Borke RC (1972) Variations and connections of the human thalamus. Vol 1: The nuclei and cerebral connections of the human thalamus. Springer, Berlin Heidelber New York

    Google Scholar 

  • Dekaban A (1953) Human thalamus. An anatomical, developmental and pathological study. I. Division of the human adult thalamus into nuclei by use of the cyto-myelo-architectonic method. J Comp Neurol 99:639–684

    Google Scholar 

  • Dekker JJ, Kuypers HGJM (1976) Morphology of rat's AV thalamic nucleus in light and electron microscopy. Brain Res 117:387–398

    Google Scholar 

  • Dewulf A (1971) Anatomy of the normal human thalamus. Topometry and standardized nomenclature. Elsevier, Amsterdam London New York

    Google Scholar 

  • Gerebtzoff MA, Ziegels J, Duchesne PY (1973) Le thalamus des mammiferes et de l'homme organisation structurale, fonctionelle et cytochimique. Bull Assoc Anat 57:727–828

    Google Scholar 

  • Hajdu F, Somogyi G, Tömböl T (1974) Neuronal and synaptic arrangement in the lateralis posterior-pulvinar complex of the thalamus in the cat. Brain Res 73:89–104

    Google Scholar 

  • Hassler R (1950) Die Anatomie des Thalamus. Arch Psychiatr Nervenkr 184:249–256

    Google Scholar 

  • Hassler R (1955) Functional anatomy of the thalamus. VIth Congres Latino-america de Neurocirurgia. Montevideo, pp 754–787

  • Hassler R (1959) Anatomie des Thalamus. In G Schaltenbrand, P Bailey (eds) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehirns. Thieme, Stuttgart, pp 230–290

    Google Scholar 

  • Hassler R (1964) Spezifische und unspezifische Systeme des menschlichen Zwischenhirns. In: W Bargmann, JP Schadé (eds) Lectures on the diencephalon. Progr Brain Res 5:1–32, Elsevier, Amsterdam London New York

    Google Scholar 

  • Keefer nDA, Chung JW, Heimer L (1980) Morphology and ultrastructure of anterior thalamic neurons solidly labeled with horseradish peroxidase. Brain Res 191:301–311

    Google Scholar 

  • Kölliker A (1896) Handbuch der Gewebelehre des Menschen. Vol 2 (Aufl 6). Engelmann, Leipzig

    Google Scholar 

  • Lemieux LH (1954) The thalamic pathology of amaurotic family idiocy. A contribution to the cytology of the thalamus. J Neuropathol Exp Neurol 13:343–352

    Google Scholar 

  • Madarasz M, Tömböl T, Hajdu F, Somogyi G (1981) Some comparative quantitavive data on the different (relay and associative) thalamic nuclei in the cat. A quantitative EM study. Anat Embryol 162:363–378

    Google Scholar 

  • Madarasz M, Tömböl T, Hajdu F, Somogyi G (1983) Quantitative histological study on the thalamic ventro-basal complex of the cat. Numerical aspects of the transfer from medial lemniscal fibers to cortical relay. Anat Embryol (Berl) 166:291–306

    Google Scholar 

  • Mathers LH (1972) Ultrastructure of the pulvinar of the squirrel monkey. J Comp Neurol 146:15–42

    Google Scholar 

  • McLardy T (1950) Thalamic projection to frontal cortex in man. J Neurol Neurosurg Psychiatry 13:198–202

    Google Scholar 

  • McLardy T (1963) Thalamic microneurons. Nature (Lond) 199:820–821

    Google Scholar 

  • Millhouse OE (1981) The Golgi methods. In: L Heimer, MJ Robards (eds) Neuroanatomical tract-tracing methods. Plenum Press, New York London, pp 311–344

    Google Scholar 

  • Namba M (1958) Über die feineren Strukturen des mediodorsalen Supranucleus und der Lamella medialis des Thalamus beim Menschen. J Hirnforsch 4:1–42

    Google Scholar 

  • Ogren MP, Hendrickson AE (1979) The structural organization of inferior and lateral subdivisions of the macaca monkey pulvinar. J Comp Neurol 188:147–178

    Google Scholar 

  • Ralston HJ, Herman MM (1969) The fine structure of neurons and synapses in the ventrobasal thalamus of the cat. Brain Res 14:77–97

    Google Scholar 

  • Ramon y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés. Vol 2. Maloine, Paris (reptinted 1955, Consejo superior de investigaciones cientificas, Madrid)

    Google Scholar 

  • Rinvik E, Grofova I (1974) Light and electron microscopical studies of the normal nuclei ventralis lateralis and ventralis anterior thalami in the cat. Anat Embryol 146:57–93

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966a) Patterns of organization in specific and nonspecific thalamic fields. In: DP Purpura, MD Yahr (eds) The thalamus. Columbia Univers Press, New York London, pp 13–46

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966b) The organization of the ventral anterior nucleus of the thalamus. A Golgi study. Brain Res 1:250–268

    Google Scholar 

  • Scheibel ME, Davies TL, Scheibel AB (1972) An unusual axonless cell in the thalamus of the adult cat. Exp Neurol 36:512–518

    Google Scholar 

  • Somogyi G, Tömböl T, Hajdu F (1973) Golgi architecture and connections of the nucleus anterodorsalis thalami. Acta Anat (Basel) 85:466–476

    Google Scholar 

  • Tömböl T (1966/67) Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res 3:307–326

    Google Scholar 

  • Tömböl T (1969) Two types of short axon (Golgi 2nd) interneurons in the specific thalamic nuclei. Acta Morphol Acad Sci Hung 17:285–297

    Google Scholar 

  • Vogt C, Vogt O (1941) Thalamus Studien I–III. J Psychol Neurol 50:33–154

    Google Scholar 

  • Waddy FF, McLardy T (1956) Pathological changes in a human brain after anoxia under ether. Confin Neurol (Basel) 16:65–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Braak, E. Neuronal types in the neocortex-dependent lateral territory of the human thalamus. Anat Embryol 169, 61–72 (1984). https://doi.org/10.1007/BF00300587

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300587

Key words

Navigation