Skip to main content
Log in

Heterogeneity in ploidy and S-phase fraction in colorectal adenocarcinomas

  • Original Articles
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

The heterogeneity in the DNA content was analysed in multiple biopsies from the surgical specimens in 77 cases of colonic and 46 cases of rectal adenocarcinomas. Frozen and unfixed tumour tissue was analysed with the flow cytometric technique. A total of 78/123 (63%) of all tumours displayed aneuploid stemlines in one or more pieces of tumour tissue; 45 were homogeneously aneuploid and 33 were heterogeneous, presenting both aneuploid and near-diploid samples. The remaining 45 tumours were homogeneously near-diploid. The heterogeneity in ploidy tended to be slightly higher if ten as compared with four samples from each tumour were analysed. Ploidy correlated to localization in the bowel and gender, but not to age, histopathological tumour stage, tumour differentiation or to the resectability rate for cure. The mean value of the S-phase fraction was 17% (range 7–31%) in the near-diploid and 14% (range 8–20%) in the aneuploid tumours. The range of the intratumoural variation was small for the DNA index (at most 5%) and high for the S-phase fraction (19% for neardiploid and 24% for aneuploid tumour pieces). Neither the mean value nor the heterogeneity in the DNA index and in the S-phase fraction displayed any correlation with the studied characteristics. In conclusion, the ploidy and the S-phase fraction varied considerably both within and between the tumours. As a consequence, multiple sampling is mandatory for a correct classification of colorectal adenocarcinomas based on the DNA content.

Résumé

L'hétérogénéité en DNA a été analysée sur de multiples biopsies provenant de spécimens chirurgicaux de 77 cas de cancers du colon et de 46 cas d'adénocarcinomes rectaux. Le tissu tumoral congelé et non fixé fut analysé par la technique du flux cytométrique. 78 des 123 tumeurs (63%) montraient une aneuploidie sur un ou plusieurs morceaux de tissu tumoral. 45 étaient aneuploides de façon homogène et 33 de façon hétérogène avec des échantillons aneuploides ou presque diploide. Les 45 tumeurs restantes étaient presque diploides de façon homogène. La tendance à l'hétérogénéité de la ploidie avait tendance à être légèrement plus élevée lorsque 10 échantillons plutôt que 4 de chaque tumeur étaient analysés. La ploidie était correlée avec la localisation dans l'intestin et le sexe mais non avec l'âge le stade histopathologique de la tumeur, la différenciation tumorale ou le taux de réséquabilité. La valeur moyenne de la fraction S-phase était de 17% (7–31%) dans les tumeurs presque diploides et 14% (8–20%) dans les tumeurs aneuploides. L'étendue de la variation intratumorale était petite pour l'index de DNA (5% au plus) et élevée pour la fraction S-Phase (19%) pour les tumeurs presque diploides et 24% pour les pièces des tumeurs aneuploides. Ni la valeur moyenne ni l'hétérogénéité dans l'index de DNA et de la fraction S-phase ne montraient de corrélation avec les caractéristiques étudiées. En conclustion la ploidie et la fraction S-phase varient considérablement à la fois dans la même tumeur et entre les tumeurs. Par voie de conséquence, de multiples échantillons doivent obligatoirement être demandés pour une classification correcte des adénocarcinomes colorectaux basés sur le contenu en DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sasaki K, Hashimoto T, Kawachino K, Takahashi M (1988) Intratumoral regional differences in DNA ploidy of gastrointestinal carcinomas. Cancer 62:2569–2575

    Google Scholar 

  2. Büchner T, Hiddeman W, Wörmann B, Kleinemeier B, Schumann J, Göhde W, Ritter J, Müller K-M, von Bassewitz DB, Roessner A, Grundmann E (1985) Differential pattern of DNA-aneuploidy in human malignancies. Path Res Pract 179:310–317

    Google Scholar 

  3. Tribukait B (1984) Clinical DNA flow cytometry. Med Oncol & Tumor Pharmacother 1:211–218

    Google Scholar 

  4. Armitage NC, Robins RA, Evans DF, Turner DR, Baldwin RW, Hardcastle JD (1985) The influence of tumour cell DNA abnormalities on survival in colorectal cancer. Br J Surg 72:828–830

    Google Scholar 

  5. Kokal WA, Gardine RL, Sheibani K, Morris PL, Prager E, Zak IW, Terz JJ (1989) Tumor DNA content in resectable, primary colorectal carcinoma. Ann Surg 209:188–193

    Google Scholar 

  6. Scott NA, Wieand HS, Moertel CG, Cha SS, Beart RW, Lieber MM (1987) Colorectal cancer. Dukes' stage, tumor site, preoperative plasma CEA level, and patient prognosis related to tumor DNA ploidy pattern. Arch Surg 122:1375–1379

    Google Scholar 

  7. Scott NA, Rainwater LM, Wiand HS, Weiland LH, Pemberton JH, Beart RW Jr, Lieber MM (1987) The relative prognostic value of flow cytometric DNA analysis and conventional clinico-pathologic criteria in patients with operable rectal carcinoma. Dis Colon Rectum 30:513–520

    Google Scholar 

  8. Suzuki H, Matsumoto K, Masuda T, Koike H (1988) DNA ploidy of colorectal carcinoma. Correlation with conventional prognostic variables. J Clin Gastroenterol 10:176–178

    Google Scholar 

  9. Kokal W, Sheibani K, Terz J, Harada JR (1986) Tumor DNA content in the prognosis of colorectal carcinoma. JAMA 255:3123–3127

    Google Scholar 

  10. Quirke P, Dixon MF, Clayden AD, Durdey P, Dyson JED, Williams NS, Bird CC (1987) Prognostic significance of DNA aneuploidy and cell proliferation in rectal adenocarcinomas. Journal of Pathology 151:285–291

    Google Scholar 

  11. Streffer C, van Beuningen D, Gross E, Schabronath J, Eigler F-W, Rebmann A (1986) Predictive assays for the therapy of rectum carcinoma. Radiotherapy and Oncology 5:303–310

    Google Scholar 

  12. Jass JR, Mukawa K, Goh HS, Love SB, Cappelaro D (1989) Clinical importance of DNA content in rectal cancer measured by flow cytometry. J Clin Pathol 42:254–259

    Google Scholar 

  13. Jones DJ, Moore M, Schofield PF (1988) Prognostic significance of DNA ploidy in colorectal cancer: a prospective flow cytometric study. Br J Surg 75:28–33

    Google Scholar 

  14. Scivetti P, Danova M, Riccardi A, Fiocca P, Mazzini G (1989) Prognostic significance of DNA content in large bowel carcinoma: a retrospective flow cytometric study. Cancer Letters 46:213–219

    Google Scholar 

  15. Schutte B, Reynders MMJ, Wiggers T, Arends JW, Volovics L, Bosman FT, Blijham GH (1987) Retrospective analysis of the prognostic significance of DNA content and proliferative activity in large bowel carcinoma. Cancer Research 47:5494–5496

    Google Scholar 

  16. Rognum TO, Thorud E, Lund E (1987) Survival of large bowel carcinoma patients with different DNA ploidy. Br J Cancer 56:663–636

    Google Scholar 

  17. Wolley RC, Schreiber K, Koss LG, Karas M, Sherman A (1982) DNA distribution in human colon carcinomas and its relationship to clinical behavior. JNCI 69:15–22

    Google Scholar 

  18. Halvorsen TB, Johannesen E (1990) DNA ploidy, tumour site, and prognosis in colorectal cancer. Scand J Gastroenterol 25:141–148

    Google Scholar 

  19. Robey-Cafferty SS, El-Naggar AK, Grignon DI, Cleary KR, Ro JY (1990) Histologic parameters and DNA ploidy as predictors of survival in stage B adenocarcinoma of colon and rectum. Modern Pathology 3:261–266

    Google Scholar 

  20. Giaretti W, Sciallero S, Bruno S, Geido E, Aste H, Di Vinci A, d'Amore ESG (1989) DNA flow cytometry of endoscopically examined colorectal adenocarcinomas. Path Res Pract 185:589–593

    Google Scholar 

  21. Heimann TM, Miller F, Martinelli G, Mester J, Kurtz RJ, Szporn A, Fasy T (1990) Significance of DNA content abnormalities in small rectal cancers. Am J Surg 159:199–203

    Google Scholar 

  22. Finan PJ, Quirke P, Dixon MF, Dyson JED, Giles GR, Bird CC (1986) Is DNA aneuploidy a good prognostic indicator in patients with advanced colorectal cancer? Br J Cancer 54:327–330

    Google Scholar 

  23. Goh HS, Jass JR, Atkin WS, Cuzick J, Northover JMA (1987) Value of flow cytometric determination of ploidy as a guide to prognosis in operable rectal cancer: a multivariate analysis. Int J Colorect Dis 2:17–21

    Google Scholar 

  24. Melamed MR, Enker WE, Banner P, Janov AJ, Kessler G, Darzynkiewicz Z (1986) Flow cytometry of colorectal carcinoma with three-year follow-up. Dis Colon Rectum 29:184–186

    Google Scholar 

  25. Bauer KD, Lincoln ST, Vera-Roman JM, Wallemark CB, Chmiel JS, Madurski ML, Murad T, Scarpelli DG (1987) I. Prognostic implications of proliferative activity and DNA aneuploidy in colonic adenocarcinomas. Laboratory Investigation 57:329–335

    Google Scholar 

  26. Hiddemann W, von Bassewitz DB, Kleinemeier H-J, Schulte-Brochterbeck E, Hauss J, Lingemann B, Büchner T, Grundmann E (1986) DNA stemline heterogeneity in colorectal cancer. Cancer 58:258–263

    Google Scholar 

  27. Tribukait B, Hammarberg C, Rubio C (1983) Ploidy and proliferation patterns in colorectal adenocarcinomas related to Dukes' classification and to histopathological differentiation. Acta Path Microbiol Immunol Scand Sect A 91:89–95

    Google Scholar 

  28. Emdin SO, Stenling R, Roos G (1987) Prognostic value of DNA content in colorectal carcinoma. A flow cytometric study with some methodologic aspects. Cancer 60:1282–1287

    Google Scholar 

  29. Temple WJ, Sugarbaker EV, Thornthwaite JT, Hensley GT, Ketcham AS (1980) Correlation of cell cycle analysis with Dukes' staging in colon cancer patients. Journal of Surgical Research 28:314–318

    Google Scholar 

  30. Kuori M, Laasonen A, Mecklin J-P, Järvinen H, Franssila K, Pyrhönen S (1990) Diploid predominance in hereditary nonpolyposis colorectal carcinoma evaluated by flow cytometry. Cancer 65:1825–1829

    Google Scholar 

  31. Quirke P, Dyson JED, Dixon MF, Bird CC, Joslin CAF (1985) Heterogeneity of colorectal adenocarcinomas evaluated by flow cytometry and histopathology. Br J Cancer 51:99–106

    Google Scholar 

  32. Petersen SE, Lorentzen M, Bichel P (1980) A mosaic subpopulation structure of human colorectal carcinomas demonstrated by flow cytometry. Flow Cytometry IV:412–416

    Google Scholar 

  33. Jones DJ, Zaloudik J, James RD, Haboubi N, Moore M, Schofield PF (1989) Predicting local recurrence of carcinoma of the rectum after preoperative radiotherapy and surgery. Br J Surg 76:1172–1175

    Google Scholar 

  34. Banner BF, Tomas-de la Vega JE, Roseman DL, Coon JS (1985) Should flow cytometric DNA analysis precede definitive surgery for colon carcinoma? Ann Surg 202:740–744

    Google Scholar 

  35. Daver A, Bocquillon PG, Pagé M, Dalifard I, Chassevent A, Litas P, Cellier P, Bertrand G, Larra F, George P, Chabrun B, Ronceray J, Delaby J, Bressollette M, Roques JF, Barthe JP (1987) Flow cytometric studies of colorectal tumors using fine needle aspiration. Anticancer Research 7:531–534

    Google Scholar 

  36. Taylor I, Machin D, Mullee M, Trotter G, Cooke T, West C (1985) A randomized controlled trial of adjuvant portal vein cytotoxic perfusion in colorectal cancer. Br J Surg 72:359–363

    Google Scholar 

  37. Pahlman L, Glimelius B (1990) Radiotherapy additional to surgery in the management of primary rectal carcinoma. Acta Chir Scand 156:475–485

    Google Scholar 

  38. Ragaz J, Baird R, Rebbeck P, Goldie J, Coldman A, Spinelli J (1985) Neoadjuvant (preoperative) chemotherapy for breast cancer. Cancer 56:719–724

    Google Scholar 

  39. Vindelöv LL, Christensen IJ, Nissen NI (1983) A detergenttrypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327

    Google Scholar 

  40. Vindelöv LL, Christensen IJ, Nissen NI (1983) Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3:328–331

    Google Scholar 

  41. Sano T, Remvikos Y, Salmon RJ (1988) Cytométrie en flux. Application à l'étude du contenu cellulaire en ADN des tumeurs colorectales. Gastroenterol Clin Biol 12:629–636

    Google Scholar 

  42. Hiddemann W, Schumann J, Andreeff M, Barlogie B, Herman CJ, Leif RC, Mayall BH, Murphy RF, Sandberg AA (1984) Convention of nomenclature for DNA cytometry. Cytometry 5:445–446

    Google Scholar 

  43. Baisch H, Göhde W, Linden WA (1975) Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle. Rad and Environm Biophys 12:31–39

    Google Scholar 

  44. Goh HS, Jass JR (1986) DNA content and the adenoma-carcinoma sequence in the colorectum. J Clin Pathol 39:387–392

    Google Scholar 

  45. Hood DL, Petras RE, Edinger M, Fazio V, Tubbs RR (1990) Deoxyribonucleic acid ploidy and cell cycle analysis of colorectal carcinoma by flow cytometry. Am J Clin Pathol 93:615–620

    Google Scholar 

  46. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. The British Journal of Radiology 62:679–694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindmark, G., Glimelius, B., Påhlman, L. et al. Heterogeneity in ploidy and S-phase fraction in colorectal adenocarcinomas. Int J Colorect Dis 6, 115–120 (1991). https://doi.org/10.1007/BF00300207

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300207

Keywords

Navigation