Skip to main content
Log in

The distribution of rare alleles

  • Letter to the Editor
  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Population geneticists have long been interested in the behavior of rare variants. The definition of a rare variant has been the subject of some debate, centered mainly on whether alleles with small relative frequency should be considered rare, or whether alleles with small numbers should be. We study the behavior of the counts of rare alleles in samples taken from a population genetics model that allows for selection and infinitely-many-alleles mutation structure. We show that in large samples the counts of rare alleles — those represented once, twice, ... — are approximately distributed as a Poisson process, with a parameter that depends on the total mutation rate, but not on the selection parameters. This result is applied to the problem of estimating the fraction of neutral mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arratia, R., Barbour, A. D. and Tavaré, S. (1992) Poisson process approximations for the Ewens sampling formula. Ann. Appl. Probab., 2, 519–535

    Google Scholar 

  • Arratia, R., Barbour, A. D. and Tavaré, S. (1993) On random polynomials over finite fields. Math. Proc. Camb. Phil. Soc., 114, 347–368

    Google Scholar 

  • Arratia, R., Barbour, A. D. and Tavaré, S. (1994) Logarithmic combinatorial structures. Ann. Probab., in preparation

  • Arratia, R. and Tavaré, S. (1992) Limit theorems for combinatorial structures via discrete process approximations. Rand. Struct. Alg., 3, 321–345

    Google Scholar 

  • Barbour, A. D., Holst, L., and Janson, S. (1992) Poisson approximation. Oxford University Press

  • Csörgő, M. and Révész, P. (1981) Strong approximation in probability and statistics. Academic Press, New York

    Google Scholar 

  • Ethier, S. N. and Kurtz, T. G. (1987) The infinitely-many-alleles model with selection as a measure-valued diffusion. Lecture Notes in Biomathematics, 70, 72–86. Springer-Verlag, Berlin

    Google Scholar 

  • Ethier, S. N. and Kurtz, T. G. (1994) Convergence to Fleming-Viol processes in the weak atomic topology. Stoch. Proc. Applns. 54, 1–27

    Google Scholar 

  • Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theor. Popn. Biol., 3, 87–112

    Google Scholar 

  • Ewens, W. J. and Li, W. -H. (1980) Frequency spectra of neutral and deleterious alleles in a finite population. J. Math. Biol., 10, 155–166

    Google Scholar 

  • Griffiths, R. C. (1983) Allele frequencies with genic selection. J. Math. Biol., 17, 1–10

    Google Scholar 

  • Hansen, J. C. (1990) A functional central limit theorem for the Ewens sampling formula. J. Appl. Prob. 27, 28–43

    Google Scholar 

  • Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58, 13–30

    Google Scholar 

  • Joyce, P. (1994a) Likelihood ratios for the infinite alleles model. J. Appl. Prob., 31, 595–605

    Google Scholar 

  • Joyce, P. (1994b) Robustness of the Ewens sampling formula. J. Appl. Prob., in press

  • Kimura, M. (1983a) Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol., 1, 84–93

    Google Scholar 

  • Kimura, M. (1983b) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kingman, J. F. C. (1980) The mathematics of genetic diversity. CBMS-NSF Regional Conference Series in Applied Mathematics. Volume 34. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania

    Google Scholar 

  • Kurtz, T. G. (1978) Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Applns., 6, 223–240

    Google Scholar 

  • Li, W. -H. (1979) Maintenance of genetic variability under the pressure of neutral and deleterious mutations in a finite population. Genetics, 92, 647–667

    Google Scholar 

  • Thompson, E. A., Neel, J. V., Smouse, P. E., and Barrantes, R. (1992) Microevolution of the Chibcha-speaking peoples of lower Central America: rare genes in an Amerindian complex. Am. J. Hum. Genet., 51, 609–626

    Google Scholar 

  • Watterson, G. A. (1978) The homozygosity test of neutrality. Genetics, 88, 405–417

    Google Scholar 

  • Watterson, G. A. (1987) Estimating the proportion of neutral mutants. Genet. Res. Camb., 51, 155–163

    Google Scholar 

  • Watterson, G. A. (1993) Estimating the proportion of neutral mutations. New Zealand J. Botany, 31, 297–306

    Google Scholar 

  • Wright, S. (1949) Adaptation and selection. In Genetics, Paleontology and Evolution, G. L. Jepson, G. G. Simpson and E. Mayr, eds., pp. 365–389. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyce, P., Tavaré, S. The distribution of rare alleles. J. Math. Biology 33, 602–618 (1995). https://doi.org/10.1007/BF00298645

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298645

Key words

Navigation