Skip to main content
Log in

The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

We have identified a Caenorhabditis elegans homolog of p34cdc2 kinase. The C. elegans homolog, ncc-1, is ∼-60% identical to p34cdc2 of Homo sapiens. When expressed from a constitutive yeast promoter, ncc-1 is capable of complementing a conditional lethal mutation in the CDC28 gene of Saccharomyces cerevisiae, indicating that this C. elegans homolog can properly regulate the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Barstead RJ, Waterston RH (1989) The basal component of the nematode dense-body is vinculin. J Biol Chem 264:10177–10185

    Google Scholar 

  • Becker DM, Fikes JD, Guarente L (1991) A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci 88:1968–1972

    Google Scholar 

  • Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants that lack orotidine 5′-phoshate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 181:288–291

    Google Scholar 

  • Coulson A, Waterston R, Kiff J, Sulston J, Kohara Y (1988) Genome linking with yeast artificial chromosomes. Nature 335:184–186

    Google Scholar 

  • Coulson AR, Sulston J, Brenner S, Karn J (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

    Google Scholar 

  • DeBondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim S-H (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Ducommun B, Brambilla P, Félix M-A, Franza BR Jr, Karsenti E, Draetta G (1991) cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 10:3311–3319

    Google Scholar 

  • Elledge SJ, Spottswood MR (1991) A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1. EMBO J 10:2653–2659

    Google Scholar 

  • Fang F, Newport JW (1991) Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66:731–742

    Google Scholar 

  • Fire A (1986) Integrative transformation of Caenorhabditis elegans. EMBO J 5:2675–2680

    Google Scholar 

  • Fleig UN, Nurse P (1991) Expression of a dominant negative allele of cdc2 prevents activation of the endogenous p34cdc2 kinase. Mol Gen Genet 226:432–440

    Google Scholar 

  • Hanks SK (1991) Eukaryotic protein kinases. Curr Op Struct Biol 1:369–383

    Google Scholar 

  • Hartwell LH (1973) Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 115:966–974

    Google Scholar 

  • Kaffman A, Herskowitz I, Tjian R, O'Shea EK (1994) Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex PHO80-PHO85. Science 263:1153–1156

    Google Scholar 

  • Lehner CF, O'Farrell PH (1990) Drosophila cdc2 homologs: a functional homolog is coexpressed with a cognate variant. EMBO J 9:3573–3581

    Google Scholar 

  • Lörincz AT, Reed SI (1986) Sequence analysis of temperature-sensitive mutations in the Saccharomyces cerevisiae gene CDC28. Molec Cell Biol 6:4099–4103

    Google Scholar 

  • Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C elegans after microinjection of DNA into germline cytoplasm: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

    Google Scholar 

  • Mendenhall MD, Richardson HE, Reed SI (1988) Dominant negative protein kinase mutants that confer a G1 arrest phenotype. Proc Nat Acad Sci USA 85:4426–4430

    Google Scholar 

  • Meyerson M, Faha B, Su L-K, Harlow E, Tsai L-H (1991) The cyclin-dependent kinase family. Cold Spring Harbor Symp Quant Biol 56:177–186

    Google Scholar 

  • Meyerson M, Enders GH, Wu C-L, Su L-K, Gorka C, Nelson C, Harlow E, Tsai L-H (1992) A family of human cdc2-related protein kinases. EMBO J 11:2909–2917

    Google Scholar 

  • Ninomiya-Tsuji J, Nomoto S, Yasuda H, Reed SI, Matsumoto K (1991) Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation. Proc Natl Acad Sci USA 88:9006–9010

    Google Scholar 

  • Nurse P (1975) Genetic control of cell size at cell division in yeast. Nature 256:547–551

    Google Scholar 

  • Nurse P, Bissett Y (1981) Gene required in G1 for commitment to cell cycle and for control of mitosis in fission yeast. Nature 292:558–560

    Google Scholar 

  • Piggott JR, Rai R, Carter BLA (1982) A bifunctional gene product involved in two phases of the yeast cell cycle. Nature 298:391–392

    Google Scholar 

  • Plasterk RHA (1992) Reverse genetics of Caenorhabditis elegans. BioEssays 14:629–633

    Google Scholar 

  • Reed SI, Wittenberg C (1990) Mitotic role for the CDC28 protein kinase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87:5697–5701

    Google Scholar 

  • Riabowol K, Draetta G, Brizuela L, Vandre D, Beach D (1989) The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57:393–401

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Skiba F, Schierenberg E (1992) Cell lineages, developmental timing and spatial pattern formation in embryos of free-living soil nematodes. Dev Biol 151:597–610

    Google Scholar 

  • Sternberg PW, Horvitz HR (1982) Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: description and comparison with those of Caenorhabditis elegans. Dev Biol 93:181–205

    Google Scholar 

  • Sulston J, Horvitz HR (1977) Postembryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Google Scholar 

  • Th'ng JPH, Wright PS, Hamaguchi J, Lee MG, Norbury CJ, Nurse P, Bradbury EM (1990) The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63:313–324

    Google Scholar 

  • Wilson R et al. (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368:32–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. A. Campos-Ortega

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, H., Palmer, R.E. & Sternberg, P.W. The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase. Molec. Gen. Genet. 245, 781–786 (1994). https://doi.org/10.1007/BF00297285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297285

Keywords

Navigation