Skip to main content
Log in

Strong shock waves propagating through a bubbly mixture

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Relatively strong shock waves propagating through a mixture of an aqueous glycerol solution and small helium or argon bubbles are investigated experimentally. Shock strength and void fraction are varied in the experiments. Results regarding shock speed and other aspects are presented and discussed in connection with previous studies. Good agreement with isothermal theory is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c g :

sound speed of gas

g :

acceleration of gravity

n :

polytropic exponent

p 0 :

initial pressure above the mixture free surface

p 1 :

pressure immediately ahead of the shock front

p 2 :

pressure immediately behind the shock front

R :

bubble radius

t :

time

U :

shock speed

x :

axial space coordinate along the shock tube

α1 :

void fraction immediately ahead of the shock front

α thg :

thermal diffusivity of gas

α 1 :

initial mean void fraction

γ:

ratio of specific heats

δ thg :

thermal penetration depth in gas

λ g :

acoustic wavelength in gas

ϱ l :

liquid density

ω:

angular frequency of bubble oscillation

B :

axial position of pressure transducer B

C :

axial position of pressure transducer C

D :

axial position of pressure transducer D

L :

axial position of the bubble generator

expt:

experiment

calc:

calculation

References

  • Board, S. J.; Caldarola, L. 1977: Fuel coolant interaction in fast reactors. In Thermal and hydraulic aspects of nuclear reactor safety, Vol. 2, pp. 195–222 (eds. Jones Jr., O. C.; Bankoff S. G.), New York: ASME

    Google Scholar 

  • Campbell, I. J.; Pitcher, A. S. 1958: Shock waves in a liquid containing gas bubbles. Proc. Roy. Soc. A243, 534–545

    Google Scholar 

  • Courant, R.; Friedrichs, K. O. 1948: Supersonic flow and shock waves. New York: Interscience

    Google Scholar 

  • Crespo, A. 1969: Sound and shock waves in liquids containing bubbles. Phys. Fluids. 12, 2274–2282

    Google Scholar 

  • Eddington, R. B. 1970: Investigation of supersonic phenomena in a two-phase (liquid-gas) tunnel. AIAA J. 8, 65–74

    Google Scholar 

  • Hijikata, K.; Mori, Y.; Nagasaki, T.; Nakagawa, M. 1979: Structure of shock wave in two-phase bubble flows. In: Proceedings of the Japan-U.S. seminar on two-phase flow dynamics, pp. 309–327.Japan

  • Hsieh, D.; Plesset, M. S. 1961: On the propagation of sound in a liquid containing gas bubbles. Phys. Fluids. 4, 970–975

    Google Scholar 

  • Kuznetsov, V. V.; Nakoryakov, V. E.; Pokusaev, B. G.; Shreiber, I. R. 1978: Propagation of perturbations in a gas-liquid mixture. J. Fluid Mech. 85, 85–96

    Google Scholar 

  • Murray, J. D. 1964: Note on the propagation of disturbances in a liquid containing gas bubbles. Appl. Sci. Res. 13A, 281–290

    Google Scholar 

  • Nakoryakov, V. E.; Sobolev, V. V.; Shreiber, I. R. 1975a: Finite waves in two-phase systems. In: Wave process in two-phase systems (Kutateladze, S. S., ed.), pp. 5–53. Novosibirsk: Inst. Thermophys., Siberian Dept., Acad. Sci. USSR

    Google Scholar 

  • Nakoryakov, V. E.; Pokusaev, B. G.; Shreiber, I. R.; Kuznetsov, V. V.; Malykh, N. V. 1975b: Experimental investigation of shock waves in a fluid with gas bubbles. In: Wave process in two-phase systems (Kutateladze, S. S., ed.), pp. 54–97. Novosibirsk: Inst. Thermophys., Siberian Dept., Acad. Sci. USSR

    Google Scholar 

  • Nigmatulin, R. I.; Shagapov, V. S. 1974: Structure of shock waves in a liquid containing gas bubbles. Izv. Akad. Nauk USSR, Mekh. Zh. i Gaza. No. 6, 30–41

    Google Scholar 

  • Noordzij, L.; van Wijngaarden, L. 1974: Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures. J. Fluid Mech. 66, 115–143

    Google Scholar 

  • Silberman, E. 1957: Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. J. Acoust. Soc. Am. 29, 925–933

    Google Scholar 

  • Tan, M. J. 1982: Propagation of pressure waves in bubbly mixtures and fragmentation of accelerating drops. Ph.D. thesis. Evanston: Northwestern University

    Google Scholar 

  • van Wijngaarden, L. 1970: On the structure of shock waves in liquid-bubble mixture. Appl. Sci. Res. 22, 366–381

    Google Scholar 

  • van Wijngaarden, L. 1972a: One-dimensional flow of liquids containing small gas bubbles. Ann. Rev. Fluid Mech. 4, 369–396

    Google Scholar 

  • van Wijngaarden, L. 1972b: Propagation of shock waves in bubble-liquid mixtures. Prog. Heat Mass Transfer. 6, 637–649

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M.J., Bankoff, S.G. Strong shock waves propagating through a bubbly mixture. Experiments in Fluids 2, 159–165 (1984). https://doi.org/10.1007/BF00296434

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296434

Keywords

Navigation