Skip to main content
Log in

Familial reciprocal translocation t(9;13)(p11;p12) investigated by silver staining and in situ hybridisation

  • Clinical Case Reports
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A maternal de novo reciprocal translocation between the short arms of chromosomes 9 and 13 is reported. Using C-, Q- or G-banding, it was not possible to determine the precise breakpoint on 13, but a combination of silver staining and in situ hybridisation was used to do so on the two chromosomes, and it was demonstrated that the break on chromosome 13 had occurred within the NOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archidiacono N, Rocchi M, Vonderveid U de, Filippi G (1978) t(9/22) with centric fission and NOR translocation leading to a case of pure trisomy 9p in the offspring. Hum Genet 40:325–331

    Article  PubMed  Google Scholar 

  • Arrighi FE, Hsu TC (1971) Localisation of heterochromatin in human chromosomes. Cytogenetics 10:81–86

    PubMed  Google Scholar 

  • Brasch JM, Symth DR (1979) Absence of silver bands in human Robertsonian translocation chromosomes. Cytogenet Cell Genet 24:122–125

    PubMed  Google Scholar 

  • Boué J, Taillemite JL, Hazael-Massieux P, Léonard C, Boué A (1975) Association of pericentric inversion of chromosome 9 and reproductive failure in ten unrelated families. Humangenetik 30:217–224

    PubMed  Google Scholar 

  • Bowen P, Ying KL, Chung GSH (1974) Trisomy 9 mosaicism in a newborn infant with multiple malformations. J Pediatr 85:95–97

    PubMed  Google Scholar 

  • Caspersson T, Lomakka G, Zech L (1971) The 24 fluorescence patterns of the human metaphase chromosomes—distinguishing characters and variability. Hereditas 62:490–492

    Google Scholar 

  • Chapelle A de la, Schröder J, Stenstrand K, Fellman J, Herva R, Saarmi M, Aurrolainein J, Tallila J, Tervila L, Husa L, Tallquist G, Robson EB, Cook PJL, Sanger R (1974) Pericentric inversions of human chromosomes 9 and 10. Am J Hum Genet 26:746–766

    PubMed  Google Scholar 

  • Dev VG, Byrne J, Bunch G (1979) Partial translocation of NOR and its activity in a balanced carrier and in her cri-du-chat foetus. Hum Genet 51:277–280

    Article  PubMed  Google Scholar 

  • Evans HJ, Buckland RA, Pardue ML (1974) Location of the human genes coding for 18S and 28S ribosomal RNA in the human genome. Chromosoma 43:405–426

    Google Scholar 

  • Ferguson-Smith MA, Handmaker SD (1961) Observations on the satellited human chromosomes. Lancet 1:638–640

    Article  PubMed  Google Scholar 

  • Ferguson-Smith MA, Handmaker SD (1963) The association of satellited chromosomes with specific chromosomal regions in cultured human somatic cells. Ann Hum Genet 27:143–153

    PubMed  Google Scholar 

  • Gagné R, Laberge C, Tanguay R (1973) Aspect cytologique et localisation intranucléaire de l'hétérochromatine constitutive des chromosomes C9 chez l'homme. Chromosoma 41:159–166

    Article  Google Scholar 

  • Gamberg N, Pajunen L, Chapelle A de la (1980) NOR activity in two families with balanced D;D translocations and numerous consecutive miscarriages. Hereditas 92:217–221

    PubMed  Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualisation of nucleolus organiser regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50

    PubMed  Google Scholar 

  • Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158

    PubMed  Google Scholar 

  • Gosden JR, Gosden CM, Lawrie SS, Mitchell AR (1978) The fate of DNA satellites I, II and III and ribosomal DNA in a familial dicentric chromosome 13,14. Hum Genet 41:131–141

    PubMed  Google Scholar 

  • Gosden JR, Gosden CM, Lawrie SS, Buckton KE (1979) Satellite DNA loss and nucleolus organiser activity in an individual with a de novo chromosome 13;14 translocation. Clin Genet 15:518–529

    PubMed  Google Scholar 

  • Gosden JR, Lawrie SS, Gosden CM (1981a) Satellite DNA sequences in the human acrocentric chromosomes: Information from translocations and heteromorphisms. Am J Hum Genet 33:243–251

    PubMed  Google Scholar 

  • Gosden JR, Spowart G, Lawrie SS (1981b) Satellite DNA and cytological staining patterns in heterochromatic inversions of human chromosome 9. Hum Genet 58:276–278

    PubMed  Google Scholar 

  • Hansmann I (1976) Structural variability of human chromosome 9 in relation to its evolution. Hum Genet 31:247–262

    PubMed  Google Scholar 

  • Hansmann I, Wiedeking C, Grumin T, Gebauer J (1977) Reciprocal or nonreciprocal human chromosome translocations. Hum Genet 38:1–5

    PubMed  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69:3394–3398

    PubMed  Google Scholar 

  • Holm PB, Rasmussen SW (1977) Human meiosis. I. The human pachytene karyotype analysed by three dimensional reconstruction of the synaptonemal complex. Carlsberg Res Commun 42:283–323

    Google Scholar 

  • Howard-Peebles PN, Stoddard GR (1976) A satellited Yq chromosome associated with trisomy 21 and an inversion of chromosome 9. Hum Genet 34:223–225

    PubMed  Google Scholar 

  • Howell WM, Denton TE, Diamond JR (1975) Differential staining of the satellite regions of human acrocentric chromosomes. Experientia (Basel) 31:260–262

    Google Scholar 

  • Lawrie SS, Gosden JR (1980) The identification of human chromosomes by quinacrine fluorescence after hybridisation in situ. Hum Genet 53:371–373

    PubMed  Google Scholar 

  • Macgregor HC, Kezer J (1973) The nucleolar organizer of Plethodon cinereus cinereus. I. Location of the nucleolar organizer by in situ nucleic acid hybridisation. Chromosoma 42:415–426

    PubMed  Google Scholar 

  • Macgregor HC, Mizuno S (1976) In situ hybridization of “nick translated” 3H-ribosomal DNA to chromosomes from salamanders. Chromosoma 54:15–25

    PubMed  Google Scholar 

  • Malcolm S, Williamson R, Boyd E, Ferguson-Smith MA (1977) A comparison of in situ hybridisation techniques for gene localisation. Cytogenet Cell Genet 19:256–261

    PubMed  Google Scholar 

  • Martin AO, Turk KB, MacIntyre MN (1974) An analysis of chromosome 9 inversions in four families. Am J Hum Genet 26:58A

    Google Scholar 

  • Mattei M-G, Mattei J-F, Aymedel S, Giraud F (1979) Dicentric Robertsonian translocation in man: 17 cases studied by R, C and N banding. Hum Genet 50:33–38

    PubMed  Google Scholar 

  • Metaxotou C, Kalpini-Mavrou A, Panagou M, Tsenghi C (1978) Polymorphism of chromosome 9 in 600 Greek subjects. Am J Hum Genet 30:85–89

    PubMed  Google Scholar 

  • Mikkelsen M, Basli A, Poulsen H (1980) Nucleolar organizer regions in translocations involving acrocentric chromosomes. Cytogenet Cell Genet 26:14–21

    PubMed  Google Scholar 

  • Miller DA, Dev VG, Tantravahi R, Miller OJ (1976) Suppression of human nucleolus organiser activity in mouse-human somatic hybrid cells. Exp Cell Res 101:235–245

    PubMed  Google Scholar 

  • Mutton DE, Daker MG (1973) Pericentric inversion of chromosome 9. Nature (New Biol) London 241:80

    Google Scholar 

  • Neu RL, Ortega CC, Barg GA, Pinto W, Gardner LJ, Howell WM, Denton TW (1976) Inclusion of satellites in an 18/21 translocation chromosome shown by ammoniacal silver staining (Sat-banding) in a case of partial trisomy 18. J Med Genet 13 (6):520–522

    PubMed  Google Scholar 

  • Parslow M, Chambers D, Drummond M, Hunter W (1979) Two cases of trisomy 12p due to rcp t(12;21)(p11;p11) inherited through three generations. Hum Genet 47:253–260

    Article  PubMed  Google Scholar 

  • Rethoré M-O, Larget-Piet L, Abonyi D, Boeswillwald M, Berger R, Carpentier S, Criveiller J, Dutrillaux B, Lafourcade J, Penneau M, Lejeune J (1970) Sur quatre cas de trisomie pour le bras court du chromosome 9. Individualisation d'une nouvelle entite morbide. Ann Génét 13:217–232

    Google Scholar 

  • Sandig KR, Muche J, Veit H (1979) Trisomy 9p resulting from de novo 9/15 translocation and a 9p isochromosome. Hum Genet 52:175–178

    PubMed  Google Scholar 

  • Schinzel A, Hayashi K, Schmid W (1974) Mosaic trisomy and pericentric inversion of chromosome 9 in a malformed boy. Hum Genet 25:171–177

    Article  Google Scholar 

  • Schmid M, Vogel W, Krone W (1975) Attraction between centric heterochromatin of human chromosomes. Cytogenet Cell Genet 15:66–80

    PubMed  Google Scholar 

  • Spowart G (1979) Reassessment of presumed Y/22 and Y/15 translocations in man using a new technique. Cytogenet Cell Genet 23:90–94

    PubMed  Google Scholar 

  • Stahl A, Luciani JM, Devictor M, Capodano AM, Gagné R (1975a) Constitutive heterochromatin and micronucleoli in the human oocyte at the diplotene stage. Humangenetik 26:315–327

    PubMed  Google Scholar 

  • Stahl A, Luciani JM, Devictor M, Hartung M, Capodano AM, Mirre C, Pardo D (1975b) L'ovocyte en prophase I de meiose: Un modèle cytologique pour l'étude des gènes qui codent pour les ARN ribosomiques. Ann Biol Anim Biochem Biophys 15:697–704

    Google Scholar 

  • Sumner AT, Evans HJ, Buckland RA (1971) A new technique for distinguishing between human chromosomes. Nature (New Biol) London 232:31

    Google Scholar 

  • Sutherland GR, Carter RF, Morris LL (1976) Partial and complete trisomy 9: Delineation of a trisomy 9 syndrome. Hum Genet 32:133–140

    PubMed  Google Scholar 

  • Varley JM (1977) Patterns of silver staining of human chromosomes. Chromosoma 61:207–214

    Article  Google Scholar 

  • Varley JM (1978) Distribution and expression of nucleolar organizers and ribosomal genes in man. Ph. D. Thesis, University of Leicester

  • Vine DT, Yarkoni S, Cohen MM (1976) Inversion heterozygosity of chromosome 9 in a highly inbred kindred. Am J Hum Genet 28:203–207

    PubMed  Google Scholar 

  • Wahrman J, Atidia J, Goitein R, Lohen T (1972) Pericentric inversion of chromosome 9 in two families. Cytogenetics 11:132–144

    PubMed  Google Scholar 

  • Wolgemuth-Jarashow DJ, Jagiello GM, Henderson AS (1977) The localisation of rDNA in small, nucleolus-like structures in human diplotene occyte nuclei. Hum Genet 36:63–68

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varley, J.M., Gosden, J. & Hultén, M. Familial reciprocal translocation t(9;13)(p11;p12) investigated by silver staining and in situ hybridisation. Hum Genet 59, 422–428 (1981). https://doi.org/10.1007/BF00295484

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00295484

Keywords

Navigation