Skip to main content
Log in

The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

When metaphase PtK1 cells are cooled to 6–8 ° C for 4–6 h the free, polar, and astral spindle microtubules (MTs) disassemble while the MTs of each kinetochore fiber cluster together and persist as bundles of cold-stable MTs. These cold-stable kinetochore fibers are similar to untreated kinetochore fibers in both their length (i.e., 5–6 μm) and in the number of kinetochore-associated MTs (i.e., 20–45) of which they are comprised. Quantitative information concerning the lengths of MTs within these fibers was obtained by tracking individual MTs between serial transverse sections. Approximately 1/2 of the kinetochore MTs in each fiber were found to run uninterrupted into the polar region of the spindle. It can be inferred from this and other data that a substantial number of MTs run uninterrupted between the kinetochore and the polar region in untreated metaphase PtK1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajer, A.S., Molé-Bajer, J.: Spindle dynamics and chromosome movement. Int. Rev. Cytol, Suppl. 2 (1972)

  • Begg, D.A., Ellis, G.W.: Micromanipulation studies of chromosome movement. 1. Chromosome spindle attachment and the mechanical properties of chromosomal spindle fibers. J. Cell Biol. 82, 528–541 (1979a)

    Google Scholar 

  • Begg, D.A., Ellis, G.W.: Micromanipulation studies of chromosome movement. 2. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle. J. Cell Biol. 82, 542–554 (1979b)

    Google Scholar 

  • Brinkley, B.R., Murphy, P., Richardson, L.C.: Procedure for embedding in situ selected cells cultured in vitro. J. Cell Biol. 35, 279–283 (1967)

    Google Scholar 

  • Brinkley, B.R., Cartwright, J.: Organization of microtubules in the spindle: Differential effects of cold shock on microtubule stability. J. Cell Biol. 47 (2 pt. 2):25a (1970)

  • Brinkley, B.R., Cartwright, J.: Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J. Cell Biol. 50, 416–431 (1971)

    Google Scholar 

  • Brinkley, B.R., Cartwright, J.: Cold labile and cold stable microtubules in the mitotic spindle of mammalian cells. Ann. N.Y. Acad. Science, 253, 428–439 (1975)

    Google Scholar 

  • Bulinski, J.C., Borisy, G.G.: Immunofluorescence localization of HeLa cell microtubule-associated proteins on microtubules in vitro and in vivo. J. Cell Biol. 87, 792–801 (1980)

    Google Scholar 

  • DeMey, J., Moeremans, M., Geuens, G., Nuydens, R., VanBelle, H., DeBrabander, M.: Immunocytochemical evidence for the association of calmodulin with microtubules of the mitotic apparatus. In: Microtubules and microtubule inhibitors 1980 (M. DeBrabander and J. DeMey, eds.), pp 227–242. New York: Elsevier Press 1980

    Google Scholar 

  • Fuge, H.: Arrangement of microtubules and the attachment of chromosomes to the spindle during anaphase in Tipulid spermatocytes. Chromosoma (Berl.) 45, 245–260 (1974)

    Google Scholar 

  • Fuge, H.: Ultrastructure of the mitotic spindle. Int. Rev. Cytol. Suppl. 6 (1977)

  • Gould, R.R., Borisy, G.G.: The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell Biol. 73, 601–615 (1977)

    Google Scholar 

  • Inoué, S.: Organization and function of the mitotic spindle. In: Primitive motile systems in cell biology, (R.D. Allen and N. Kamiya, eds.), pp. 549–598. New York: Academic Press 1964

    Google Scholar 

  • Lafountain, J.R., Thomas, H.R.: The ultrastructure of spindle microtubules after freeze-etching and negative staining in situ. J. Ultrastruct. Res., 51, 340–347 (1975)

    Google Scholar 

  • Lambert, A.M., Bajer, A.S.: Microtubule distribution and reversible arrest of chromosome movement induced by low temperature. Cytobiologie 15, 1–15 (1977)

    Google Scholar 

  • Margolis, R., Wilson, L., Kiefer, B.: Mitotic mechanism based on intrinsic microtubule behavior. Nature (Lond.) 272, 450–452 (1978)

    Google Scholar 

  • McDonald, K., Cande, W.Z.: Structural and physiological studies of mitotic mammalian cells. J. Cell Biol. 87 (2 pt. 2), 236a (1980)

  • McDonald, K., Pickett-Heaps, J.D., McIntosh, J.R., Tippit, D.H.: On the mechanism of anaphase spindle elongation in Diatoma vulgare. J. Cell Biol., 74, 377–388 (1977)

    Google Scholar 

  • McIntosh, J.R., Cande, W.A., Snyder, J.A.: Structure and physiology of the mammalian mitotic spindle. In: Molecules and cell movement (S. Inoue and R.E. Stephens, eds.), pp. 31–76. New York: Raven Press 1975a

    Google Scholar 

  • McIntosh, J.R., Cande, W.A., Snyder, J.A., Vanderslice, K.: Studies on the mechanism of mitosis. Ann. N.Y. Acad. Sci. 253, 407–427 (1975b)

    Google Scholar 

  • McIntosh, J.R., Sisken, J.E., Chu, L.K.: Structural studies on mitotic spindles isolated from cultured human cells. J. Ultrastruct. Res. 66, 40–52 (1979)

    Google Scholar 

  • Nicklas, R.B.: Mitosis. In: Advances in Cell Biology, (D.M. Prescott, L. Goldstein and E.H. McConkey, eds.), pp. 225–297. New York: Appelton Press 1971

    Google Scholar 

  • Nicklas, R.B.: Chromosome movement: Current models and experiments on living cells. In: Molecules and cell movement (S. Inoué and R.E. Stephens, eds.), pp. 97–117. New York: Raven Press 1975

    Google Scholar 

  • Rieder, C.L.: Thick and thin serial sectioning for the three-dimensional reconstruction of biological ultrastructure. In: Methods in cell biology, 22, 215–249 (1981)

    Google Scholar 

  • Rieder, C.L., Bajer, A.S.: Heat induced reversible hexagonal packing of spindle microtubules. J. Cell Biol., 74, 717–725 (1977)

    Google Scholar 

  • Rieder, C.L., Borisy, G.G.: The attachment of kinetochores to the prometaphase spindle in PtK1 cells. Recovery from low temperature treatment. Chromosoma (Berl.) 82, 693–716 (1981)

    Google Scholar 

  • Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus. Chromosoma (Berl.) 40, 43–82 (1973a)

    Google Scholar 

  • Roos, U.P.: Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma (Berl.) 41, 195–220 (1973b)

    Google Scholar 

  • Salmon, E.D., Begg, D.A.: Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J. Cell Biol. 85, 853–865 (1980)

    Google Scholar 

  • Salmon, E.D., Goode, D., Maugel, T.K., Boner, D.B.: Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J. Cell Biol. 69, 443–454 (1976)

    Google Scholar 

  • Schibler, M.J., Pickett-Heaps, J.D.: Mitosis in Oedogonium: Spindle microfilaments and the origin of the kinetochore fiber. J. Cell Biol., 22, 678–698 (1980)

    Google Scholar 

  • Webb, B.C., Wilson, L.: Cold-stable microtubules from brain. Biochemistry 19, 1993–2001 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieder, C.L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84, 145–158 (1981). https://doi.org/10.1007/BF00293368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293368

Keywords

Navigation