Skip to main content
Log in

Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have isolated and characterized a nuclear mutant, 222E, in Chlamydomonas reinhardtii, which is defective in photosystem II (PSII). Polypeptide P5, the product of psbB, is not produced in this mutant, leading to a destabilization of other PSII components. The mutant specifically fails to accumulate psbB transcripts and displays an altered transcription pattern downstream of psbB. Pulse-labelling experiments suggest that mRNA stability and/or processing are affected by the alteration of a nuclear gene product in this mutant. We show that the C. reinhardtii psbB gene is co-transcribed with a small open reading frame that is highly conserved in location and amino acid sequence in land plants. The 5′ and 3′ termini of the psbB transcript have been mapped to 35 bases upstream of the initiation codon and approximately 600 bases downstream of the stop codon. The 3′ flanking region contains two potential stem-loops, of which the larger (with an estimated free energy of −46 kcal) is near the 3′ terminus of the transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CC, Stern DB (1990) Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucleic Acids Res 18:6003–6010

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1990) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Bennoun P, Delepelaire P (1982) Isolation of photosynthesis mutants in Chlamydomonas. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, pp 25–38

    Google Scholar 

  • Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M, Rochaix J-D (1986) Characterization of photosystem II mutants of tChlamydomonas reinhardtii lacking the psbA gene. Plant Mol Biol 6:151–160

    Google Scholar 

  • Bonham-Smith PC, Bourque DP (1989) Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucleic Acids Res 17:2057–2080

    Google Scholar 

  • Bukharov AA, Kolosov VL, Zolotarev AS (1988) Nucleotide sequence of rye chloroplast DNA fragment encoding psbB and psbH genes. Nucleic Acids Res 16:8737

    Google Scholar 

  • Deng XW, Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49:379–387

    Google Scholar 

  • de Vitry C, Olive J, Drapier D, Recouvreur M, Wellman FA (1989) Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol 109:991–1006

    Google Scholar 

  • Dron M, Rahire M, Rochaix J-D (1982) Sequence of the chloroplast DNA region of Chlamydomonas reinhardtii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes. J Mol Biol 162:775–793

    Google Scholar 

  • Erickson JM, Rochaix J-D (1991) The molecular biology of photosystem II. In: Barber J (ed) Topics in photosynthesis, vol 10. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Erickson JM, Rahire M, Rochaix J-D (1984) Chlamydomonas reinhardtii gene for the 32000 mol. wt. protein of photosystem II contains four large introns and is located entirely within the chloroplast inverted repeat. EMBO J 3:2753–2762

    Google Scholar 

  • Erickson JM, Rahire M, Malnoë P, Girard-Bascou J, Pierre Y, Bennoun P, Rochaix J-D (1986) Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem 11 stability and D1 expression. EMBO J 5:1745–1754

    Google Scholar 

  • Fukuzawa H, Kohchi T, Sano T, Shirai H, Umesono K, Inokuchi H, Ozeki H, Ohyama K (1988) Structure and organization of Marchantia polymorpha chloroplast genome III. Gene organization of the large single copy region from rbcL to trnI(CAU). J Mol Biol 203:333–351

    Google Scholar 

  • Goldschmidt-Clermont M (1986) The two genes for the small subunit of RuBP carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Mol Biol 6:13–21

    Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54:1665–1669

    Google Scholar 

  • Gruissem W (1989) Chloroplast gene expression: how plants turn their plastids on. Cell 56:161–170

    Google Scholar 

  • Gruissem W, Barkan A, Deng XW, Stern D (1988) Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet 4:258–263

    Google Scholar 

  • Guertin M, Bellemare G (1979) Synthesis of chloroplast ribonucleic acid in Chlamydomonas reinhardtii toluene-treated cells. Eur J Biochem 96:125–129

    Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook. A comprehensive guide to biology and laboratory use. Academic Press, San Diego, USA

    Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1987) Chlamydomonas reinhardtii. In: O'Brien SJ (ed) Genetic maps 1987. A compilation of linkage and restriction maps of genetically studied organisms, vol 4. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Hanley-Bowdoin L, Chua NH (1987) Chloroplast promoters. Trends Biochem Sci 12:67–70

    Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Google Scholar 

  • Hird SM, Webber AN, Wilson RJ, Dyer TA, Gray JC (1991) Differential expression of the psbB and psbH genes encoding the 47 kDa chlorophyll a-protein and the 10 kDa phosphoprotein of photosystem II during chloroplast development in wheat. Curr Genet 19:199–206

    Google Scholar 

  • Jensen KH, Herrin DL, Plumley FG, Schmidt GW (1986) Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation. J Cell Biol 103:1315–1325

    Google Scholar 

  • Kates JR, Jones RE (1964) The control of gametic differentiation in liquid cultures of Chlamydomonas. J Cell Comp Physiol 63:157–164

    Google Scholar 

  • Keller M, Weil JH, Krishnan Nair CK (1989) Nucleotide sequence of the psbB gene of Euglena gracilis. Plant Mol Biol 13:723–725

    Google Scholar 

  • Kuchka MR, Mayfield SP, Rochaix J-D (1988) Nuclear mutations specifically affect the synthesis and/or degradation of the chloroplast-encoded D2 polypeptide of photosystem II in Chlamydomonas reinhardtii. EMBO J 7:319–324

    Google Scholar 

  • Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix J-D (1989) Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Cell 58:869–876

    Google Scholar 

  • Levine RP, Ebersold WT (1960) The genetics and cytology of Chlamydomonas. Annu Rev Microbiol 14:197–216

    Google Scholar 

  • Mayfield SP, Bennoun P, Rochaix J-D (1987) Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of photosystem II particles in Chlamydomonas reinhardtii. EMBO J 6:313–318

    Google Scholar 

  • Morris J, Herrmann RG (1984) Nucleotide sequence of the gene for the P680 chlorophyll a apoprotein of the photosystem II reaction center from spinach. Nucleic Acids Res 12:2837–2850

    Google Scholar 

  • Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6:1571–1579

    Google Scholar 

  • Nickelsen J, Link G (1989) Interaction of a 3′ RNA region of the mustard trnK gene with chloroplast proteins. Nucleic Acids Res 17:9637–9648

    Google Scholar 

  • Nickelsen J, Link G (1991) RNA-protein interactions at transcript 3′ ends and evidence for trnK-psbA cotranscription in mustard chloroplasts. Mol Gen Genet 228:89–96

    Google Scholar 

  • Offermann-Steinhard K, Herrmann RG (1990) Nucleotide sequences of psbB and psbH, the plastid encoded genes for CP47 and the 10 kDa phosphoprotein of photosystem II in Oenothera hookeri and argillicola. Nucleic Acids Res 18:6452

    Google Scholar 

  • Reverdatto SV, Andreeva AV, Buryakova AA, Chakhmakhcheva OG, Efimov VA (1989) Nucleotide sequence of the 5.2 kbp barley chloroplast DNA fragment, containing psbB-psbH-petB-petD gene cluster. Nucleic Acids Res 17:2859–2860

    Google Scholar 

  • Rochaix J-D (1981) Organization, function and expression of the chloroplast DNA of Chlamydomonas reinhardtii. Experientia 37:323–440

    Google Scholar 

  • Rochaix J-D, Erickson J (1988) Function and assembly of photosystem II: genetic and molecular analysis. Trends Biochem Sci 13:56–59

    Google Scholar 

  • Rochaix J-D, Mayfield S, Goldschmidt-Clermont M, Erickson J (1988) Molecular biology of Chlamydomonas. In: Shaw CH (ed) Plant molecular biology, a practical approach. IRL Press, Oxford, pp 253–275

    Google Scholar 

  • Rochaix J-D, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J, Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J 8:1013–1021

    Google Scholar 

  • Rock CD, Barkan A, Taylor WC (1987) The maize plastid psbB-psbF-petB-petD gene cluster: spliced and unspliced petB and petD RNAs encode alternative products. Curr Genet 12:69–77

    Google Scholar 

  • Schmidt GW, Matlin KS, Chua NH (1977) A rapid procedure for selective enrichment of photosynthetic electron transport mutants. Proc Natl Acad Sci USA 74:610–614

    Google Scholar 

  • Schuster G, Gruissem W (1991) Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein. EMBO J 10:1493–1502

    Google Scholar 

  • Shepherd HS, Boynton JE, Gillham NW (1979) Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. Proc Natl Acad Sci USA 76:1353–1357

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Google Scholar 

  • Sieburth LE, Berry-Lowe S, Schmidt GW (1991) Chloroplast RNA stability in Chlamydomonas: rapid degradation of psbB and psbC transcripts in two nuclear mutants. Plant Cell 3:175–189

    Google Scholar 

  • Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    Google Scholar 

  • Stern DB, Gruissem W (1989) Chloroplast mRNA 3′ end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Mol Biol 13:615–625

    Google Scholar 

  • Stern DB, Jones H, Gruissem W (1989) Function of plastid mRNA 3′ inverted repeats. J Biol Chem 264:18742–18750

    Google Scholar 

  • Stern DB, Radwanski ER, Kindle KL (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3:285–297

    Google Scholar 

  • Tinoco I Jr, Borer PN, Dengler B, Levin MD, Uhlenbeck OC, Crothers DM, Bralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41

    Google Scholar 

  • Vermaas WFJ, Williams JGK, Rutherford AW, Mathis P, Arntzen CJ (1986) Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47. Proc Natl Acad Sci USA 83:9474–9477

    Google Scholar 

  • Vermaas WFJ, Williams JGK, Arntzen CJ (1987) Sequencing and modification of psbB, the gene encoding the CP-47 protein of photosystem II, in cyanobacterium Synechocystis 6803. Plant Mol Biol 8:317–326

    Google Scholar 

  • Woessner JP, Masson A, Harris EH, Bennoun P, Gillham NW, Boynton JE (1984) Molecular and genetic analysis of the chloroplast ATPase of Chlamydomonas. Plant Mol Biol 3:177–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monod, C., Goldschmidt-Clermont, M. & Rochaix, JD. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii . Molec. Gen. Genet. 231, 449–459 (1992). https://doi.org/10.1007/BF00292715

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292715

Key words

Navigation