Skip to main content
Log in

The layered organization of nucleosomes in 30 nm chromatin fibers

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We have used electron microscopy and established methods of three-dimensional reconstruction to obtain structural information on the 30 nm chromatin fibers from sea cucumber sperm and chicken erythrocytes. The fibers show a longitudinal periodicity of 10–11 nm. We have interpreted this periodicity as due to a grouping of nucleosomes into disks, each disk containing about 5–6 nucleosomes. These disks are closely stacked to form the chromatin fiber. We have built a detailed model for four fibers and we have determined the approximate coordinates of all the nucleosomes in them. The average distance found between neighboring nucleosomes has a value close to 11 nm. They may be connected either as a regularly distorted helix or as a layered zigzag. The second model appears more appropriate, since in the constrictions of the fibers the nucleosomes can only be connected as a zigzag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azorín F, Martínez AB, Subirana JA (1980) Organization of nucleosomes and spacer DNA in chromatin fibers. Int J Biol Macromol 2:81–92

    Google Scholar 

  • Azorín F, Pérez-Grau L, Subirana JA (1982) Supranucleosomal organization of chromatin: electron microscopy visualization of long polynucleosomal chains. Chromosoma 85:251–260

    Google Scholar 

  • Bates DL, Butler PJG, Pearson EC, Thomas JO (1981) Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem 119:469–476

    Google Scholar 

  • Burgoyne LA, Skinner JD (1982) Avian erythrocyte chromatin degradation: the progressive exposure of the dinucleosomal repeat by bovine-pancreatic-DNAse-I-armed probes and free DNAse-I. Nucleic Acid Res 10:665–673

    Google Scholar 

  • Butler PJG, Thomas JO (1980) Changes in chromatin folding in solution. J Mol Biol 140:505–529

    Google Scholar 

  • Cornudella L, Rocha E (1979) Nucleosome organization during germ cell development in the sea cucumber Holothuria tubulosa. Biochemistry 18:3724–3732

    Google Scholar 

  • Crowther RA, De Rosier DJ, Klug A (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc R Soc Lond A 317:319–340

    Google Scholar 

  • Derenzini M, Hernández-Verdún D, Bouteille M (1983) Visualization of a repeating subunit organization in rat hepatocyte chromatin fixed in situ. J Cell Sci 61:137–149

    Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897–1901

    Google Scholar 

  • Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A (1977) Structure of nucleosome core particles of chromatin. Nature 269:29–36

    Google Scholar 

  • Frank J, Shmikin B, Dowse H (1981) Spider-A modular software system for electron image processing. Ultramicroscopy 6:343–358

    Google Scholar 

  • Gilbert PCF (1972) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II Direct Methods. Proc R Soc Lond B 182:89–102

    Google Scholar 

  • Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481

    Google Scholar 

  • Guckenberger R (1982) Determination of a common origin in the micrographs of tilt series in three-dimensional electron microscopy. Ultramicroscopy 9:167–174

    Google Scholar 

  • Hoppe W, Hegerl R (1980) Three dimensional structure determination by electron microscopy (non periodic specimens). In: Hawkes PW (ed) Computer processing of electron microscope images. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Houssier C, Lasters I, Muyldermans S, Wyns L (1981) The structural organization of dinucleosomes and oligonucleosomes. Electric dichroism and birefringence study. Nucleic Acid Res 9:5763–5784

    Google Scholar 

  • Igo-Kemenes T, Hörz W, Zachau HG (1982) Chromatin. Ann Rev Biochem 51:89–121

    Google Scholar 

  • Itkes AV, Glotov BO, Nikolaev LG, Preem SR, Severin ES (1980) Repeating oligonucleosomal units. A new element for chromatin structure. Nucleic Acid Res 8:507–527

    Google Scholar 

  • Juvells I, Vallmitjana S, Muñoz-Guerra S, Subirana JA (1982) Fourier analysis and optical diffraction of electron micrographs of chromatin fibers. J Optics 13:115–118

    Google Scholar 

  • Marion C (1984) The structural organization of oligonucleosomes. J Biomol Struct Dynam 2:303–317

    Google Scholar 

  • Marion C, Bezot P, Hesse-Bezot C, Roux B, Bernengo JC (1981) Conformation of chromatin oligomers. Eur J Biochem 120:169–176

    Google Scholar 

  • McGhee, JD, Nickol JM, Felsenfeld G, Rau DC (1983) Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 33:831–841

    Google Scholar 

  • McGhee JD, Rau DC, Charney E, Felsenfeld G (1980) Orientation of the nucleosome within the higher order structure of chromatin Cell 22:87–96

    Google Scholar 

  • Olins AL (1978) Bodies are close-packed in chromatin fibers. Cold Spring Harbor Symp Quant Biol 42:325–329

    Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    Google Scholar 

  • Olins DE, Olins AL, Levy HA, Durfee RC, Margle SM, Tinnel EP, Dover SD (1983) Electron microscope tomography: transcription in three dimensions. Science 220:498–500

    Google Scholar 

  • Olins AL, Olins DE, Zentgraf H, Franke WW (1980) Visualization of nucleosomes in thin sections by stereo electron microscopy. J Cell Biol 87:833–836

    Google Scholar 

  • Olins AL, Senior MB, Olins DE (1976) Ultrastructural features of chromatin v bodies. J Cell Biol 68:787–792

    Google Scholar 

  • Osipova TN, Pospelov VA, Svetlikova SB, Vorob'ev VI (1980) The role of histone H1 in compaction of nucleosomes. Eur J Biochem 113:183–188

    Google Scholar 

  • Radermacher M (1980) Dreidimensionale Rekonstruktion bei kegelförmiger Kippung im Elektronenmikroskop. Ph.D.Thesis. Fakultät für Physik der Technischen Universität München

    Google Scholar 

  • Rattner JB, Hamkalo BA (1978a) Higher order structure in metaphase chromosomes. I The 250 Å fiber. Chromosoma 69:363–372

    Google Scholar 

  • Rattner JB, Hamkalo BA (1978b) Higher order structure in metaphase chromosomes. II The relationship between the 250 Å fiber, superbeads and beads-on-a-string. Chromosoma 69:373–379

    Google Scholar 

  • Renz M, Nehls P, Hozier J (1977) Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci USA 74:1879–1883

    Google Scholar 

  • Ris H (1967) Ultrastructure of the animal chromosome. In: Koningsberger VV, Bosch L (eds) Regulation of nucleic acid and protein biosynthesis. Elsevier, Amsterdam, pp 11–21

    Google Scholar 

  • Ris H (1975) Chromosomal structure as seen by electron microscopy. In: The structure and function of chromatin, Ciba Found Symp 28. Associated Scientific Publishers, Amsterdam, pp 7–28

    Google Scholar 

  • Ruiz-Carrillo A, Puigdomenech P, Lurz R (1980) Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Biochemistry 19:2544–2554

    Google Scholar 

  • Simpson RT (1978) Structure of the chromosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531

    Google Scholar 

  • Staynov DZ (1983) Possible nucleosome arrangements in the higher order structure of chromatin. Int J Biol Macrom 5:3–9

    Google Scholar 

  • Staynov DZ, Dunn S, Baldwin JP, Crane-Robinson C (1983) Nuclease digestion patterns as a criterion for nucleosome orientation in the higher order structure of chromatin. FEBS Lett 157:311–314

    Google Scholar 

  • Strogatz S (1983) Topology of zigzag chromatin. J Theor Biol 103:601–607

    Google Scholar 

  • Subirana JA, Muñoz-Guerra S, Martínez AB, Pérez-Grau L, Marcet X, Fita I (1981) The subunit structure of chromatin fibers. Chromosoma 83:455–471

    Google Scholar 

  • Subirana JA, Muñoz-Guerra S, Radermacher M, Frank J (1983) Three dimensional reconstruction of chromatin fibers. J Biomol Struct Dynam 1:705–714

    Google Scholar 

  • Thoma F, Koller Th, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–4427

    Google Scholar 

  • Thomas JP, Butler PJG (1980) Size-dependence of a stable higher order structure of chromatin. J Mol Biol 144:80–93

    Google Scholar 

  • Thomas JO, Khabaza AJA (1980) Cross-linking of histone H1 in chromatin. Eur J Biochem 112:501–511

    Google Scholar 

  • Woodcock CLF (1973) Ultrastructure of inactive chromatin. J Cell Biol 59:368a (Abstr.)

    Google Scholar 

  • Woodcock CLF, Frado LLY (1978) Ultrastructure of chromatin subunits during unfolding, histone depletion and reconstitution. Cold Spring Harb Symp Quant Biol, 42:43–55

    Google Scholar 

  • Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci USA 78:1461–1465

    Google Scholar 

  • Zentgraf H, Franke WW (1984) Differences of supranucleosomal organization in different kinds of chromatin: cell type-specific globular subunits containing different numbers of nucleosomes. J Cell Biol 99:272–286

    Google Scholar 

  • Zwick M, Zeitler E (1973) Image reconstruction from projections. Optik 38:550–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subirana, J.A., Muñoz-Guerra, S., Aymamí, J. et al. The layered organization of nucleosomes in 30 nm chromatin fibers. Chromosoma 91, 377–390 (1985). https://doi.org/10.1007/BF00291012

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291012

Keywords

Navigation