Skip to main content
Log in

Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.

Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.

Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified “non-phosphorylated” Entner-Doudoroff pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelal T, Schlegel HG (1974) Purification and regulatory properties of fructose 1,6-diphosphatase from Hydrogenomonas eutropha. J Bacterial 120: 304–310

    Google Scholar 

  • Altekar W, Rangaswamy V (1991) Ketohexokinase (ATP: D-fructose 1-phosphotransferase) initiates fructose breakdown via the modified EMP pathway in halophilic archaebacteria. FEMS Microbiol Lett 83: 241–246

    Google Scholar 

  • Altekar W, Rangaswamy V (1992) Degradation of endogenous fructose during catabolism of sucrose and mannitol in halophilic archaebacteria. Arch Microbiol 158: 356–363

    Google Scholar 

  • Amachi T, Bowien B (1979) Characterization of two fructose bisphosphatase isoenzymes from the hydrogen bacteria Nocardia opaca 1b. J Gen Microbiol 113: 347–356

    Google Scholar 

  • Bode CH, Goebel H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 5: 419–422

    Google Scholar 

  • Buchanan BB (1974) Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria. J Bacteriol 119: 1066–1068

    Google Scholar 

  • Cooper RA, Kornberg HL (1974) Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase In: Boyer PD (ed) The enzymes, vol. 10. Academic Press, New York, pp 631–649

    Google Scholar 

  • Daldal F, Fraenkel DG (1983) Assessment of a futile cycle involving reconversion of fructose-6-phosphate to fructose 1,6-biphosphate during gluconeogenetic growth of Escherichia coli. J Bacteriol 153: 390–394

    Google Scholar 

  • Danson MJ (1988) Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol 29: 165–231

    Google Scholar 

  • Eden G, Fuch G (1983) Autotrophic CO2 fixation in Acetobacterium woodii. II. Demonstration of enzymes involved. Arch Microbiol 135: 68–73

    Google Scholar 

  • Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch Microbiol 132: 67–74

    Google Scholar 

  • Fabry S, Hensel R (1987) Purification and characterization of d-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaebacterium Methanothermus fervidus. Eur J Biochem 165: 147–155

    Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145: 56–61

    Google Scholar 

  • Frings W, Schlegel HG (1971) Synthese von Phosphoenolpyruvat aus Pyruvat durch Extrakte aus Hydrogenomonas eutropha Stamm H 16. Arch Mikrobiol 79: 220–230

    Google Scholar 

  • Fuchs G, Stupperich E (1982) Autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt 1 Orig C 3: 277–288

    Google Scholar 

  • Fuchs G, Stupperich E (1986) Carbon assimilation pathways in archaebacteria. Syst Appl Microbiol 7: 364–369

    Google Scholar 

  • Fuchs G, Winter H, Steiner I, Stupperich E (1983) Enzymes of gluconeogenesis in the autotroph Methanobacterium thermoautotrophicum. Arch Microbiol 136: 160–162

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hensel R, Laumann S, Lang J, Heumann H, Lottspeich F (1987) Characterization of two d-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem 170: 325–333

    Google Scholar 

  • Hochstein LI (1988) The physiology and metabolism of the extremely halophilic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 2. CRC Press, Boca Raton, pp 67–83

    Google Scholar 

  • Jansen K, Stupperich E, Fuchs G (1982) Carbohydrate synthesis from acetyl CoA in the autotroph Methanobacterium thermoautotrophicum. Arch Microbiol 132: 355–364

    Google Scholar 

  • Josse J (1966) Constitutive inorganic pyrophosphatase of Escherichia coli I. Purification and catalytic properties. J Biol Chem 241: 1938

    Google Scholar 

  • Krishnan G, Altekar W (1991) An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis. Eur J Biochem 195: 343–350

    Google Scholar 

  • Lanzotti V, Trincone A, Nicolaus B, Zillig W, DeRosa M, Gambacorta M (1989) Complex lipids of Pyrococcus and AN1, thermophilic members of archaebacteria belonging to Thermococcales. Biochim Biophys Acta 1004: 44–48

    Google Scholar 

  • Mukund S, Adams MWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. J Biol Chem 266: 14208–14216

    Google Scholar 

  • Pontremoli S, Horecker BL (1971) Fructose-1,6-diphosphatases. In: Boyer PD (ed) The enzymes, vol 4. Academic Press, New York, pp 612–646

    Google Scholar 

  • Schäfer S, Barkowski C, Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146: 301–308

    Google Scholar 

  • Schäfer T, Schönheit P (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP forming). Arch Microbiol 155: 366–377

    Google Scholar 

  • Schäfer T, Schönheit P (1992) Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158: 188–202

    Google Scholar 

  • Schäfer T, Selig M, Schönheit P (1993) Acetyl-CoA synthetase (ADP-forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch Microbiol 159: 72–83

    Google Scholar 

  • Schönheit P, Wäscher C, Thauer RK (1978) A rapid procedure for the purification of ferredoxin from Clostridia using polyethyleneimine. FEBS Lett 89: 219–222

    Google Scholar 

  • Scholz S, Sonnenbichler J, Schäfer W, Hensel R (1992) Di-myoinositol-1,1′-phosphate — a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett 306: 239–242

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    Google Scholar 

  • Tomlinson GA, Koch TK, Hochstein LI (1974) The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol 20: 1085–1091

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucarya. Proc Natl Acad Sci USA 87: 4576–4579

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132: 604–613

    Google Scholar 

  • Zwickl P, Fabry S, Bogedain C, Haas A, Hensel R (1990) Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J Bacteriol 172: 4329–4338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, T., Schönheit, P. Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway. Arch. Microbiol. 159, 354–363 (1993). https://doi.org/10.1007/BF00290918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290918

Key words

Navigation