Skip to main content
Log in

A model of the peripheral auditory system

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

Recent electrophysiological data obtained from auditory nerve fibers of cats have made possible the formulation of a model of the peripheral auditory system that relates the all-or-none activity of these fibers to acoustic stimulation. The components of the model are intended to represent the major functional components of the peripheral system. These components are: (i) a linear mechanical system intended to represent the outer, middle, and mechanical parts of the inner ear; (ii) a transducer intended to represent the action of the sensory cells; and (iii) a model neuron whose properties are intended to represent the nerve excitation process. A general-purpose digital computer has been used to determine the response of the model to a variety of acoustic stimuli. These results have been compared with data obtained from auditory nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  2. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 99–100. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  3. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 447–464. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  4. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 447–448. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  5. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 442, 500–508. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  6. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 454. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  7. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 455. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  8. Békésy, G. v.: Experiments in hearing, edit. by E. G. Wever, p. 461. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  9. Blair, E. A., and J. Erlanger: A comparison of the characteristics of axons through their individual electrical responses. Amer. J. Physiol. 106, 524–564 (1933).

    Google Scholar 

  10. Buller, A. J., J. G. Nicholls, and G. Ström: Spontaneous fluctuations of excitability in the muscle spindle of the frog. J. Physiol. (Lond.) 122, 409–418 (1953).

    Article  CAS  Google Scholar 

  11. Clark, W. A.: The Lincoln TX-2 computer development; Frankovich, J. M., and H. P. Peterson: A functional description of the Lincoln TX-2 computer; Forgie, J. W.: The Lincoln TX-2 input-output system; Best, R. L.: Memory units in the Lincoln TX-2; Olsen, K. H.: Transistor circuitry in the Lincoln TX-2. Consecutive articles in: Proc. Western Joint Computer Conference, February 26–28, 1957, p. 143–171.

  12. Davis, H.: Biophysics and physiology of the inner ear. Physiol. Rev. 37, 1–49 (1957).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, H.: A mechano-electrical theory of cochlear action. Ann. Otol. (St. Louis) 67, 789–802 (1958).

    CAS  Google Scholar 

  14. Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41, 391–416 (1961).

    Article  CAS  PubMed  Google Scholar 

  15. De Becker, J. C.: Fluctuations in excitability of single myelinated nerve fibres. Experientia (Basel) 20, 553–557 (1964).

    Article  Google Scholar 

  16. Eccles, J. C.: The physiology of synapses. New York: Academic Press, Inc. 1964.

    Book  Google Scholar 

  17. Engström, H.: Electron micrographic studies of the receptor cells of the organ of Corti. In: Neural mechanisms of the auditory and vestibular systems, edit. by G. L. Rasmussen and W. Windle, p. 48–64. Springfield (Ill.): Ch. C. Thomas 1960.

    Google Scholar 

  18. Fatt, P., and B. Katz: Some observations on biological noise. Nature (Lond.) 166, 597–598 (1950).

    Article  CAS  Google Scholar 

  19. Fatt, P., and B. Katz: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  20. Feller, W.: An introduction to probability theory and its applications, p. 278. New York: John Wiley & Sons 1950.

    Google Scholar 

  21. Fetz, E. F., and G. L. Gerstein: An RC model for spontaneous activity of single neurons. Quarterly Progress Report No 71, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., October 15, 1963, p. 249–257.

    Google Scholar 

  22. Flanagan, J. L.: Models for approximating basilar mem brane displacement. Bell System Tech. J. 39, 1163–1192 (1960).

    Article  Google Scholar 

  23. Flanagan, J. L.: Computational model for basilar membrane displacement. J. Acoust. Soc. Amer. 34, 1370–1376 (1962).

    Article  Google Scholar 

  24. Frishkopf, L. S.: A probability approach to certain neuroelectric phenomena. Technical Report 307, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., March 1, 1956.

    Google Scholar 

  25. Frishkopf, L. S.: A probability approach to certain neuroelectric phenomena. Technical Report 307, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., March 1, 1956. p. 63.

    Google Scholar 

  26. Frishkopf, L. S., and W. A. Rosenblith: Fluctuations in neural thresholds. Symposium on Information Theory in Biology, edit. by H. P. Yockey, p. 153–168. London and New York: Pergamon Press 1958.

    Google Scholar 

  27. Furman, G. G., and L. S. Frishkopf: Model of neural inhibition in the mammalian cochlea. J. Acoust. Soc. Amer. 36, 2194–2201 (1964).

    Article  Google Scholar 

  28. Gerstein, G. L.: Mathematical models for the all-or-none activity of some neurons. IRE Trans. on Inform. Theory IT-8, 137–143 (1962).

    Article  Google Scholar 

  29. Gerstein, G. L., and N. Y-S. Kiang: An approach to the quantitative analysis of electrophysiological data from single neurones. Biophys. J. 1, 15–28 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerstein, G. L., and B. Mandelbrot: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldberg, J. M., H. O. Adrian, and F. D. Smith: Response of neurons of the superior olivary complex to acoustic stimuli of long duration. J. Neurophysiol. 27, 706–749 (1964).

    Article  CAS  PubMed  Google Scholar 

  32. Guinan, J. J., and W. T. Peake: Motion of middle ear bones. Quarterly Progress Report No. 74, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., July 15, 1964, p. 219–221.

    Google Scholar 

  33. Hagiwara, S.: Analysis of interval fluctuations of the sensory nerve impulse. Jap. J. Physiol. 4, 234–240 (1954).

    Article  CAS  Google Scholar 

  34. Hind, J. E.: Unit activity in the auditory cortex. In: Neural mechanisms of the auditory and vestibular systems, edit. by G. L. Rasmussen and W. Windle, p. 203. Springfield (Ill.): Ch. C. Thomas 1960.

    Google Scholar 

  35. Hodgkin, A. L.: The subthreshold potentials in a crustacean nerve fibre. Proc. Roy. Soc. B 126, 87–121 (1938).

    Article  Google Scholar 

  36. Hodgkin, A. L.: A local electric response in crustacean nerve. J. Physiol. (Lond.) 91,5p-7p (1937).

    Google Scholar 

  37. Hodgkin, A. L., and A. F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  38. Householder, A. S., and H. D. Landahl: Mathematical biophysics of the central nervous system, p. 53–55. Bloomington, Ind.: Principia Press 1945.

    Google Scholar 

  39. Kac, M., and D. Slepian: Large excursions of Gaussian processes. Ann. Math. Statist. 30, 1215–1228 (1959).

    Article  Google Scholar 

  40. Katsuki, Y.: Neural mechanism of hearing in cats and insects. In: Electrical activity of single cells, edit. by Y. Katsuki, p. 53–75. Tokyo: Igaku Shoin 1960.

    Google Scholar 

  41. Katsuki, Y., N. Suga, and Y. Kanno: Neural mechanism of the peripheral and central auditory system in monkeys. J. Acoust. Soc. Amer. 34, 1396–1410 (1962).

    Article  Google Scholar 

  42. Kiang, N. Y.-S.: Spontaneous activity of single auditory nerve fibers in cats (Abstract). J. Acoust. Soc. Amer. 35, 793 (1963).

    Article  Google Scholar 

  43. Kiang, N. Y.-S., T. Watanabe, E. C. Thomas, and L. F. Clark: Stimulus coding in the cat's auditory nerve. Ann. Otol. (St. Louis) 71, 1009–1027 (1962).

    CAS  Google Scholar 

  44. Kiang, N. Y. S., with the assistance of T. Watanabe, Eleanor C. Thomas, and Louise F. Clark: Discharge patterns of single fibers in the cat's auditory nerve. M.I.T. Research Monograph No 35. Cambridge, Mass.: The M.I.T. Press 1965.

    Google Scholar 

  45. Landahl, H. D.: Theory of the distribution of response times in nerve fibers. Math. Biophys. 3, 141–147 (1941).

    Article  Google Scholar 

  46. Licklider J. C. R.: Basic correlates of the auditory stimulus. In: Handbook of experimental psychology, edit. by S. S. Stevens, p. 995. New York: John Wiley & Sons 1951.

    Google Scholar 

  47. McFadden, J. A.: The axis-crossing intervals of random functions. IRE Trans, on Inform. Theory IT-2, 146–150 (1956); -The axis-crossing intervals of random functions II. IRE Trans, on Inform. Theory IT-4, p. 14–24 (1958); - The fourth product moment of infinitely clipped noise. IRE Trans, on Inform. Theory IT-4, 159–162 (1958); - The axis crossings of a stationary Gaussian Markov process. IRE Trans, on Inform. Theory IT-7, 150–153 (1961).

    Article  Google Scholar 

  48. McGill, W. J., and W. A. Rosenblith: Electrical responses to two clicks: A simple statistical interpretation. Bull. Math. Biophys. 13, 69–77 (1951).

    Article  Google Scholar 

  49. Møller, A.: Transfer function of the middle ear. J. Acoust. Soc. Amer. 35 1526–1534 (1963).

    Article  Google Scholar 

  50. Monnier, A.-M., and H. H. Jasper: Recherche de la relation entre les potentiels d'action elementaires et la chronaxie de subordination. Nouvelle demonstration du fonctionnement par ≪tout ou rien≫ de la fibre nerveuse. C.R.Soc. Biol. (Paris) 110, 547–549 (1932).

    Google Scholar 

  51. Nomoto, M., N. Suga, and Y. Katsuki: Discharge pattern and inhibition of primary auditory nerve fibers in the monkey. J. Neurophysiol. 27, 768–787 (1964).

    Article  CAS  PubMed  Google Scholar 

  52. Pecher, C.: La fluctuation d'excitabilité de la fibre nerveuse. Arch. Intern. Physiol. 49, 129–152 (1939).

    Google Scholar 

  53. Rice, S. O.: Mathematical analysis of random noise. In: Selected papers on noise and stochastic processes, edit. by N. Wax, p. 133–294. New York: Dover Publications, Inc. 1954.

    Google Scholar 

  54. Rupert, A., G. Moushegian, and R. Galambos: Unit responses to sound from auditory nerve of the cat. J. Neurophysiol. 26, 449–465 (1963).

    Article  CAS  PubMed  Google Scholar 

  55. Siebert, W. M.: Models for the dynamic behavior of the cochlear partition. Quarterly Progress Report No 64, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., January 15, 1962, p. 242–258.

    Google Scholar 

  56. Siebert, W. M.: Some implications of the stochastic behavior of primary auditory neurons. Kybernetik 2, 206–215 (1965).

    Article  CAS  PubMed  Google Scholar 

  57. Siebert, W. M., and P. R. Gray: Random process model for the firing pattern of single auditory neurons. Quarterly Progress Report No 71, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., October 15, 1963, p. 241–245.

    Google Scholar 

  58. Slepian, D.: The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41, 463–501 (1962).

    Article  Google Scholar 

  59. Tasaki, I.: Nerve impulses in individual auditory nerve fibers of guinea pig. J. Neurophysiol. 17, 97–122 (1954).

    Article  CAS  PubMed  Google Scholar 

  60. Hoopen, M. ten, A. den hertog, and H. A. Reuver: Fluctuation in excitability of nerve fibers — A model study. Kybernetik 2, 1–8 (1963).

    Article  Google Scholar 

  61. Hoopen, M. ten, and A. A. Verveen: Nerve-model experiments on fluctuation in excitability. In: Nerve, brain, and memory models, edit. by Norbert Wiener and J. P. Schadé, p. 8–21. Amsterdam: Elsevier Publ. Co. 1963.

    Google Scholar 

  62. Verveen, A. A.: On the fluctuation of threshold of the nerve fibre. In: Structure and function of the cerebral cortex, edit. by D. B. Tower and J. P. Schadé. Proc. Second Internat. Meeting of Neurobiologists, Amsterdam, 1959, p. 282–288. Amsterdam: Elsevier Publ. Co. 1960.

    Google Scholar 

  63. Verveen, A. A.: Fluctuation in excitability. Amsterdam: Drukkerij Holland N. V. 1961.

    Google Scholar 

  64. Verveen, A. A.: Fluctuation in excitability. Amsterdam: Drukkerij Holland N.V. 1961, p. 60–64.

    Google Scholar 

  65. Verveen, A. A.: Axon diameter and fluctuation in excitability. Acta morph. neerl.-scand. 5, 79–85 (1963).

    Google Scholar 

  66. Verveen, A. A., and H. E. Derksen: Fluctuations in membrane potential of axons and the problem of coding. Kybernetik 2, 152–160 (1965).

    Google Scholar 

  67. Viernstein, L. J., and R. G. Grossman: Neural discharge patterns in the transmission of sensory information. In: Information theory, edit. by C. Cheery, p. 252–269. London: Butterworths Sc. Publ. 1961.

    Google Scholar 

  68. Weiss, T. P.: A model for firing patterns of auditory nerve fibers. Quarterly Progress Report No 69, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., April 15, 1963, p. 217–223.

    Google Scholar 

  69. Weiss, T. F.: A model for firing patterns of auditory nerve fibers. Technical Report 418, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., March 2, 1964.

    Google Scholar 

  70. Wiener, F. M., and D. A. Ross: The pressure distribution in the auditory canal in a progressive sound field. J. Acoust. Soc. Amer. 18, 401–408 (1946).

    Article  Google Scholar 

  71. Wiener, F. M., R. R. Pfeiffer, and A. S. N. Backus: On the sound pressure transformation by the head and auditory meatus of the cat. Acta oto-laryng. (Stockh.) 61, 255–269 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Joint Services Electronics Program (Contract DA 36-039-AMC-03200(E); and in part by the National Science Foundation (Grant GP-2495), the National Institutes of Health (Grant MH-04737-05), the National Aeronautics and Space Administration (Grant NsG-496); and by Research Grant NB-01344, National Institute of Neurological Diseases and Blindness of the National Institutes of Health, Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, T.F. A model of the peripheral auditory system. Kybernetik 3, 153–175 (1966). https://doi.org/10.1007/BF00290252

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290252

Keywords

Navigation